著者
武村 俊介 奥脇 亮 久保田 達矢 汐見 勝彦 木村 武志 野田 朱美
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Due to complex three-dimensional (3D) heterogeneous structures, conventional one-dimensional (1D) analysis techniques using onshore seismograms can yield incorrect estimation of earthquake source parameters, especially dip angles and centroid depths of offshore earthquakes. Indeed, detail analysis of 2016 southeast off the Kii Peninsula earthquake revealed that observed seismic and tsunami record could be explained by low-angle thrust faulting on the plate boundary (e.g., Kubota et al., 2018; Takemura et al., 2018; Wallace et al., 2016) but regional 1D moment tensor analysis showed high-angle reverse faulting mechanism.Combining long-term onshore seismic observations and numerical simulations of seismic wave propagation in a 3D model, we conducted centroid moment tensor (CMT) inversions of earthquakes along the Nankai Trough. Green’s functions for CMT inversions of moderate earthquakes were evaluated via OpenSWPC (Maeda et al., 2017) using the Japan Integrated Velocity Structure Model (Koketsu et al., 2012). We re-analyzed moderate (Mw 4.3-6.5) earthquakes listed in the F-net catalog (Fukuyama et al., 1998; Kubo et al., 2002) that occurred from April 2004 to August 2019. By introducing the 3D structures of the low-velocity accretionary prism and the Philippine Sea Plate, our CMT inversion method provided better constraints of dip angles and centroid depths for offshore earthquakes. These two parameters are important for evaluating earthquake types in subduction zones.Our 3D CMT catalog of offshore earthquakes and published slow earthquake catalogs (e.g., Kano et al., 2018) along the Nankai Trough depicted spatial distributions of slip behaviors on the plate boundary. The regular and slow interplate earthquakes were separately distributed, with these distributions reflecting the heterogeneous distribution of effective strengths on the plate boundary. By comparing the spatial distribution of seismic slip on the plate boundary with the slip-deficit rate distribution (Noda et al., 2018), regions with strong coupling were identified.Acknowledgments We used F-net waveform data and the F-net MT catalog (https://doi.org/10.17598/NIED.0005). Our CMT catalog and CMT results of assumed source grids for each earthquake are available from https://doi.org/10.5281/zenodo.3661116. The FDM simulations of seismic wave propagation were conducted on the computer system of the Earthquake and Volcano Information Center at the Earthquake Research Institute, the University of Tokyo. This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 17K14382 and 19H04626.
著者
江本 賢太郎 汐見 勝彦 那須 健一
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.72, pp.35-41, 2019-06-05 (Released:2019-08-03)
参考文献数
23

Spatial distribution of seismicity has hitherto been visualized on two-dimensional maps and vertical cross-sections along certain lines so far. Owing to the advances in technology, we have developed a mobile application for iPhone and iPad devices, which can display the seismicity of Japan in three-dimensional (3D) view. Each hypocenter is plotted as a 3D spherical object whose color and size represented its depth and magnitude, respectively. The geometry of the Philippine Sea Plate and the Pacific Plate can be plotted as 3D polygons with the hypocenters, simultaneously. In addition to those plate boundaries, the topography of Japan and the ocean bathymetry around it are also plotted as a 3D polygon. The 3D image of the hypocenters and plate geometries helps users to perceive intuitively the spatial distribution of earthquakes such as that many earthquakes occur along the subducting plates. Moreover, the spatiotemporal distribution of seismicity can be seen by the time-lapse animation of hypocenters. The hypocenter catalog can be downloaded through the Internet by using the account of NIED MOWLAS. More than one month’s earthquakes (18,000 events) can be displayed smoothly.
著者
平田 直 汐見 勝彦 加納 靖之
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

近年、地球科学の分野においても、様々なデータのオープン化の取り組みが行われている。1995年に発生した阪神・淡路大震災が、地震学分野におけるデータのオープン化の起点となった。この震災の発生を契機として政府に設置された地震調査研究推進本部は、1997年8月、地震や地殻変動の観測を含む基盤的調査観測の基本的な考えをまとめた計画(地震に関する基盤的調査観測計画)を公表した。この計画に基づき、防災科学技術研究所(防災科研)は地震観測網(Hi-net, F-net, K-NET, KiK-net)を、国土地理院はGNSS連続観測システム(GEONET)をそれぞれ日本全国に整備した。また、この計画では、基盤的調査観測の結果を公開することを原則とし、円滑な流通を図るよう努めることが定められている。現在、上記ならびに大学等の研究機関による観測データはオンライン共有されており、様々な防災情報の発信や研究開発に活用されている。また、基盤的調査観測計画に基づく観測データはインターネット上でも公開されており、各機関が定めたポリシーに従うことを前提に、ウェブサイトから自由にダウンロードして利用することが可能である。地震観測網については、その後、南海トラフ域の地震・津波観測を目的としたDONETが海洋研究開発機構により構築されたほか、2011年東日本大震災の発生を受け、日本海溝沿いに海底地震津波観測網(S-net)が防災科研により整備された。2016年4月にDONETが防災科研に移管されたことを受け、現在は、陸域の地震観測網、基盤的火山観測網を含めた陸海統合地震津波火山観測網MOWLASとして防災科研による運用およびデータ公開が行われている。大学においても、微小地震観測のデータを公開する「全国地震データ等利用系システム」が整備されたのをはじめ、気象庁の観測情報や統計情報、国土地理院の測地データ、産業技術総合研究所の地質・地殻変動データなど、大学・研究機関での地震学に関わるデータ公開が進んできた。学術界でのオープンデータの動きだけでなく、国や地方自治体によるオープンデータの流れも背景にある。一方、大規模な観測システムを将来にわたって維持し、データ公開を継続するためには、データの必要性や有用性を客観的に示す必要がある。また、学術雑誌等において、解析に使用したデータを第三者の検証用に容易に参照可能とすることを求める傾向が強くなっている。このような要望に対応することを目的として、防災科研MOWLASの観測波形データに対し、DOI(Digital Object Identifiers;デジタルオブジェクト識別子)の付与がなされた。海洋研究開発機構、国立極地研究所でも既にDOIを付与した多様かつ大量のデータの公開がなされている。機関や研究グループとしてデータに識別子をつける方向性のほか、データジャーナルやデータリポジトリを通じたデータの公開の例も増えつつある。これらの取り組みは、データの引用を容易にするとともに、広く公開されているデータの利用価値を客観的に把握し、データ生成者のコミュニティへの貢献度を評価する指標となることが期待されている。また、研究成果(論文等)の公開(オープンアクセス)、データの公開(オープンデータ)だけでなく、研究の過程もオープンにする取り組み(オープンコラボレーション)も実施されている。例えば、観測記録や地震史料を市民参加により研究に利用可能なデータに変換そたり、地震観測に市民が参加するなどの試みである。これらは研究データを充実させるとともに、研究成果を普及し、「等身大の地震学」を伝えるためにも有効であると考えられる。さらに、データをオープンにした場合、研究者コミュニティの外でも有効活用されるために必要となるツールの整備や、データの意味を正確に伝えるための工夫も必要となってくる。データのオープン化は今後ますます進むと考えられ、多様なデータのオープン化が地震研究を活性化することは疑いない。一方で、効率的にデータ公開を進めるためのデータフォーマットや公開手段の標準化、公開のためのハードウェアの構築や維持にかかるコストの確保、観測などのデータの生成から公開までの担い手の育成、など課題も多い。日本地震学会2019年度秋季大会では「オープンデータと地震学」と題する特別セッションを開催し、上記のような現状把握や、学術界を取りまくオープンデータの状況、個別の取り組みについて広く情報交換を行なった。学会内での議論はもちろんのこと、関連の学協会や学術コミュニティとの連携をはかりつつ、地球惑星科学分野のオープンデータの進展を追求したい。
著者
武村 俊介 松澤 孝紀 野田 朱美 利根川 貴志 浅野 陽一 木村 武志 汐見 勝彦
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

沈み込みプレート境界浅部で発生するスロー地震は、プレート境界の摩擦状態などの構造的特徴を知る鍵となる(例えば、Saffer and Wallace, 2015 Nature Geo.)。本研究では、室戸岬沖から紀伊半島南東沖にかけての領域で発生した浅部超低周波地震に着目し、浅部超低周波地震の活動の空間変化から発生域の構造的特徴を明らかにすることを目的とする。Asano et al. (2008 EPS)の手法で得られた浅部超低周波地震の検知時刻周辺を解析時間窓として、周期20-50秒の帯域のF-net速度波形に対してTakemura et al. (2018 GRL)のCMT解析を行い、浅部超低周波地震の発震時刻、震央位置、地震モーメントおよび震源時間関数のパルス幅を推定した。CMT解析のためのGreen関数は、Takemura et al. (2019 PAGEOPH)の3次元不均質構造モデルを仮定した地震動シミュレーションにより評価した。2003年6月から2018年5月の期間に検知された浅部超低周波地震に対してCMT解析を行ったところ、室戸岬沖、紀伊水道沖および紀伊半島南東沖のトラフ軸付近に低角逆断層の解が多く推定された。得られたCMTカタログから、それぞれの領域における積算モーメントを評価し、その空間変化を調べた。室戸岬沖、紀伊水道沖および紀伊半島南東沖の領域で積算モーメントが高く、紀伊半島南方沖では小さいことがわかった。浅部超低周波地震の活動域の構造的特徴を明らかにするため、得られた積算モーメントの空間変化と、すべり欠損速度(Noda et al. 2018 JGR)およびS波速度構造(Tonegawa et al. 2017 Nature Comm.)を比較した。浅部超低周波地震の積算モーメントが高い領域は、すべり欠損速度が大きい領域の周囲に位置し、プレート境界直上に顕著な低速度領域が存在することがわかった。低速度領域から流体の存在が示唆され、浅部超低周波地震の発生は流体とすべり欠損速度の両方が鍵をにぎると考えられる。謝辞F-netの広帯域速度波形記録を使用しました.スロー地震学のスロー地震データベースよりカタログをダウンロードしました(Kano et al., 2018 SRL).地震動計算には地球シミュレータを利用しました.
著者
汐見 勝彦 松原 誠 小原 一成
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.117, no.1, pp.45-58, 2008-02-25 (Released:2010-02-10)
参考文献数
35
被引用文献数
2 2

By the end of the last century, the rough configuration of the Moho discontinuity beneath the Japan Islands had been revealed based on explosion surveys and natural earthquake observations. Recently, however, some researchers have pointed out that local roughness of the Moho geometry or relative location between continental and oceanic Moho might provide important knowledge about the source regions of large earthquakes.  Within the southern portion of the Kinki district, the Philippine Sea plate subducts beneath the continental plate at the Nankai Trough. We detect P-to-S converted wave energy from the Moho velocity discontinuity beneath the Kinki district with receiver function analysis, and compare the results of other recent investigations of the depth of Moho. Both oceanic and continental Moho discontinuities are detected in not only our receiver function analysis but also active-source seismic exploration survey and travel-time tomography analysis. The inferred depths of the subducting oceanic Moho beneath the Kii Peninsula, the southern Kinki district, and the continental Moho beneath the northern Kinki correspond well with each other. However, beneath the central Kinki district, no significant converted phases are observed corresponding to the Moho depth inferred from the travel-time analyses. We interpret that no sharp velocity discontinuity exists around the Moho in the central Kinki district.
著者
武村 俊介 利根川 貴志 中島 淳一 汐見 勝彦
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

海洋プレート上部に低速度層として存在する海洋性地殻は,沈み込みに伴う脱水反応によりエクロジャイト化することで,深い部分では海洋マントルと同程度の地震波速度となることが予想される(例えば,Fukao et al., 1983 Nature; Abers et al., 2003 GRL; Hacker et al., 2003 JGR).本研究では,海洋モホを伝播する屈折波を用いて,フィリピン海プレートの海洋性地殻がエクロジャイト化する深さを拘束することを試みる.海域で発生する海洋モホより浅い地震時に,陸域で観測される初動は海洋モホを伝播する屈折波となることが知られている(Takemura et al., 2016 EPS).例えば,2016年4月1日に三重県南東沖の地震時に陸域のHi-netで観測された初動走時は,震央距離70~200 kmにおいて見掛け速度7.2 km/s程度の屈折波PPHSが明瞭に確認できる.震央距離200 km以上では,見掛け速度8 km/s以上と海洋マントルに対応した初動走時となる.このような見掛け速度の距離変化は,マントル以深の地震波速度構造に起因すると考えられる.現実的な構造を仮定した2次元差分法による地震動シミュレーションにより,初動走時の特徴を調べる.地殻構造はF-net 1D構造(Kubo et al., 2002 Tectonophys.),フィリピン海プレート上面形状はHirose et al. (2008 JGR)を採用し,プレート上面から深さ方向に7 kmの領域を海洋性地殻としてシミュレーションを行った.海洋性地殻を深部まで低速度層として存在させると,PPHSが遠方まで初動として伝播し,観測された初動走時の特徴を説明できない.そこで,海洋性地殻が海洋マントルと同程度まで高速化し,海洋モホがある深さで消失したとしてシミュレーションを行った.海洋モホの消失する深さを様々に変えたシミュレーションから,海洋モホが消失する深さに依存して初動走時が変化することがわかった.海洋性地殻のエクロジャイト化により海洋モホが深さ52 km以深で速度コントラストを持たなくなり,初動がPPHSから海洋マントルに対応したP波に変わるため,初動走時が変化する.海洋モホの消失する深さを52 kmとした時に,初動走時の再現性が最も良くなった.この深さは,Kato et al. (2014 EPS)による紀伊半島下のフィリピン海プレートの海洋性地殻のエクロジャイト化する深さと整合的である.以上のことから,海域で発生した海洋モホより浅い地震とモデルシミュレーションの比較から,海洋モホの速度コントラストが消失する深さを拘束できることが期待される.海洋モホの消失は沈み込みに伴う脱水反応が原因と考えられ,海洋性地殻のエクロジャイト化と関連があると考えられ,沈み込む流体の移送過程を知るヒントとなる.謝辞F-net MTカタログとHi-net速度波形を利用したました.地震動計算には地球シミュレータを利用しました.
著者
栗原 明 井上 幸俊 汐見 勝彦
出版者
一般社団法人映像情報メディア学会
雑誌
テレビジョン学会誌 (ISSN:03866831)
巻号頁・発行日
vol.49, no.11, pp.1506-1512, 1995-11-20
参考文献数
5

フライバックトランスは, テレビセット内で使用される高電圧発生用トランスであり, 従来の方式では, 使用されるコイル内の短絡に起因するレアショート事故が発生していた.生産開始以来, 約25年を経過して, この対策のための新たな巻線, 工法の評価法を開発した.このシステムの採用により, 社会問題になっていたテレビの発煙発火については保護回路の研究も進み, ほぼ皆無にすることができた.同時に, フライバックトランスを使用する方法も改善し, 寿命を短期間に推定可能な加速寿命試験方法の開発に取組み, 成果を得ることができたので, ここに報告する.
著者
武村 俊介 松澤 孝紀 木村 武志 利根川 貴志 汐見 勝彦
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

本研究では,紀伊半島沖で発生する浅部超低周波地震のモーメントテンソルインバージョンを行った.南海トラフで発生する浅発地震では,厚く堆積した海洋堆積物(以下,付加体)が表面波の励起および伝播に大きな影響を与える(例えば,Furumura et al., 2008; Nakamura et al., 2015; Guo et al., 2016).そこで,付加体内の地震波速度構造モデルはTonegawa et al. (2017)による推定結果により構築し,付加体下の構造は全国1次地下構造モデル(Koketsu et al., 2012)としたTakemura et al. (2018)の3次元不均質構造モデルを採用し,差分法による地震動シミュレーション(Furumura and Chen, 2004; Takemura et al., 2015)によりGreen関数を評価した.Green関数計算のための震源をフィリピン海プレート上面に0.1°毎に設定し,震源時間関数は継続時間t秒のcosine関数を仮定した.陸域に敷設されたF-netの速度波形に周期20-50秒のバンドパスフィルターをかけ,モーメントテンソルインバージョンを行った.観測波形の再現性をVariance Reductionで評価し,Variance Reductionが最大となる解を探索し,浅部超低周波地震のモーメントテンソル,継続時間,セントロイド位置および時刻を推定した.手法の妥当性を検討するため,海底地震計記録を用いて推定されたSugioka et al (2012)の浅部超低周波地震に対し,本手法を適応した.本研究のモーメントテンソルインバージョンは,使用した帯域や手法の違いにより継続時間やセントロイド時刻に違いがあるが,Sugioka et al. (2012)と同様のセントロイド位置に同様な低角逆断層が最適解として得られた.一方で,全国1次地下構造モデルを仮定してモーメントテンソルインバージョンを行ったところ,異なる位置に高角逆断層が最適解として得られた.以上のことから,海底地震計の記録がない場合でも,適切な3次元不均質構造を仮定することで正確なモーメントテンソル解が得られることがわかり,DONETなどの海底地震計敷設以前の浅部超低周波地震の活動評価の高度化に資すること可能であると考えられる.謝辞F-netの広帯域速度波形記録を使用しました.スロー地震学のスロー地震データベースよりSugioka et al. (2012)のカタログをダウンロードしました.地震動計算には地球シミュレータを利用しました.
著者
武村 俊介 汐見 勝彦
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

近年、GMS(Aoi and Fujiwara, 1999)やOpenSWPC(Maeda et al. 2017)などの地震動シミュレーションコードの発展が目覚ましい。それに加え、全国1次地下構造モデル(Koketsu et al. 2012)やMatsubara et al. (2008)など、日本列島の3次元地下不均質構造についても多くのモデルが提案されており、現実的な地下構造を用いた地震動伝播シミュレーションは身近なものとなった。しかし、3次元地下不均質構造の地震波動場への影響は未知な点が多く、特に沈み込む海洋プレート周辺の地震の地震波伝播を考える上ではその影響を把握することが喫緊の課題となる。そこで、本研究では南海トラフとその周辺で発生する地震の地震動伝播シミュレーションから、観測地震波動場に見られる3次元地下不均質構造の影響について紹介する。地震動シミュレーションは並列差分法(Furumura and Chen, 2004; Takemura et al., 2015)により実行し、3次元地下構造モデルは全国1次地下構造モデルを利用した。512×640×153.6 km3の計算領域を水平方向0.125 km、鉛直方向0.1 kmで離散化し、周期の3秒以上の地震動について、地球シミュレータ1024ノードを用いて計算を行った。シミュレーションの対象とした地震は、2016年4月1日の三重県南東沖の地震(Event A)、2016年10月21日の鳥取県中部の地震(Event B)と2016年11月19日の和歌山県南部の地震(Event C)の3つである。それぞれ、プレート境界地震、地殻内地震とスラブ内地震であり、発震機構としてF-netのMT解を用いた。陸域の観測網内で発生した地震(Event BとEvent C)は、観測地震動の再現性が非常に高く、仮定した震源モデルおよび構造モデルが妥当であると考えることができる。一方で、海域で発生したEvent Aは、観測波形の再現性が低い。これは観測網外で発生した地震の震源解の推定精度が低いことと、海域の構造モデルチューニングが未だ不十分であることが原因と考えられる。発表では、観測波形の再現性を詳細に紹介しつつ、広帯域地震波動場再現のためのモデル化手法と課題を議論する。謝辞Hi-net/F-netおよびDONETの速度波形記録を使用しました.地震動計算には地球シミュレータを利用しました.
著者
鍵山 恒臣 筒井 智樹 三ヶ田 均 森田 裕一 松島 健 井口 正人 及川 純 山岡 耕春 熊谷 博之 西村 裕一 宮町 宏樹 渡辺 了 西村 太志 高木 朗充 山本 圭吾 浜口 博之 岡田 弘 前川 徳光 大島 弘光 植木 貞人 橋本 恵一 仁田 交一 茂原 諭 中道 治久 汐見 勝彦 中原 恒 青木 重樹 青地 秀雄 井田 喜明
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.70, no.2/4, pp.33-60, 1996-03-15

In recent years, investigations on the structures of volcanoes have been noteworthy for further understanding volcanic processes, including locations of magma reservoirs, magma rising process before eruptions and causes of related phenomena. In 1994, a joint experiment was conducted on Kirishima Volcanoes, Southern Kyushu, to reveal the structure and the magma supply system by a group of scientists from national universities under the National Research Project for the Prediction of Volcanic Eruptions. The experiment was carried out by seismological, electromagnetic and other geophysical methods. The following seven papers including this one present some results of the experiments. This paper outlines a seismic explosion experiment in Kirishima, and presents all data on the first motion. An extensive explosion seismic experiment was conducted on December 1, 1994. Observations were made along a 30-km major line lying in the NNW-SSE direction and other sub-lines which cross the major line in and around the Kirishima Volcanoes. Along these lines, 6 shots with a charge size of 200-250 kg, and 163 temporary observations were arranged by many universities and institutes. A newly developed data logger was used for these temporal observations, and the position of each site was determined by GPS. All 6 shots were successfully fired, and clear onset and significant phases were observed at most observation sites. A travel time diagram suggests that a high velocity layer crops out south of the Kirishima Volcanoes, while in the Kirishima Volcanoes, this layer is covered with a lower velocity layer, which is thick at the northern part. It is also suggested that a structural discontinuity exists between S3 and S4.
著者
堀 貞喜 石田 瑞穂 青井 真 井上 公 大久保 正 岡田 義光 小原 一成 笠原 敬司 木村 尚紀 熊谷 博之 汐見 勝彦 関口 渉次 根岸 弘明 野口 伸一 松本 拓己 山水 史生 藤原 広行 功刀 卓 浅野 陽一 関根 秀太郎 廣瀬 仁 松原 誠 安逹 繁樹 伊藤 喜宏 針生 義勝 松林 弘智 松村 稔 宮川 幸治 山品 匡史 坂無 雅子 雷 楓 伊東 明彦 岩田 知孝 ト部 卓 川勝 均 木下 繁夫 工藤 一嘉 纐纈 一起 佐藤 春夫 佐藤 比呂志 武井 恵雄 中尾 茂 平田 直 平原 和朗 堀家 正則 松澤 暢 山北 聡 綿田 辰吾 山野 誠
出版者
独立行政法人防災科学技術研究所
雑誌
防災科学技術研究所年報 (ISSN:09186441)
巻号頁・発行日
vol.15, pp."I-12"-"I-16", 2004-09-06

地震調査研究推進本部の総合基本施策(「地震に関する観測、測量、調査及び研究の推進についての総合的かつ基本的な施策(平成11年4月23日)」)、及び調査観測計画(「地震に関する基盤的調査観測計画(平成9年8月29日)」、「地震に関する基盤的調査観測計画の見直しと重点的な調査観測体制の整備(平成13年8月28日)」、「地震に関する基盤的調査観測等の結果の流通・公開について(平成14年8月26日)」)等に基づき、高感度・広帯域地震観測施設と強震観測施設を整備し、観測網の維持・管理・運用を行う。これら基盤的観測網と防災科研の在来地震観測網から得られるデータの収集・処理を行い、気象庁、大学等のデータと合わせて蓄積・流通・公開を行う。また、防災科研が海外に整備した観測施設についても、円滑な維持・管理とともに、観測方式の高度化を行いつつ、データの収集・処理・蓄積・公開を行う。さらに、各観測網から得られるデータを用いて、高度な地殻活動のモニタリングを実施し、地震活動状況の推移を判断するための研究成果を創出する。