著者
長田 博文 舟木 直久 種村 秀紀 白井 朋之 香取 真理 乙部 厳己 篠田 正人 矢野 裕子 矢野 孝次
出版者
九州大学
雑誌
基盤研究(B)
巻号頁・発行日
2009

本研究では、2次元クーロンポテンシャルに対しても適用可能な,干渉ブラウン運動の構成に関する一般的構成定理とSDE表現定理を確立した.その結果をGinibre点過程, Dyson点過程, Bessel点過程というランダム行列に関する代表的な測度に対して適用し,無限次元確率力学系を記述する確率微分方程式を求めて,解いた. Ginibre点過程のPalm測度の特異性を研究し,通常のGibbs測度と異なる興味深い結果を得た.更に、2次元ヤング図形の時間発展モデルを構成し,そのスケール極限を求めた。
著者
俣野 博 舟木 直久 山本 昌宏 ヴァイス ゲオグ 栄 伸一郎 谷口 雅治
出版者
東京大学
雑誌
基盤研究(B)
巻号頁・発行日
2001

俣野は,ベキ型および指数関数型の非線形性をもつ非線形熱方程式の解の爆発後の振る舞いを調べ,爆発の際に生じた特異点が一瞬にして消滅し,解が滑らかになることを証明した(文献1).また,ベキ型の場合の解の爆発のオーダーを調べ,これまで未解明であった中間的な超臨界指数の範囲では,球対称解の爆発のオーダーが必ずタイプ1になることを示した(文献2).山本は,2次元の楕円型方程式における2つの未知の移流項を決定する逆問題を考え,広義解析関数の理論などを用いて,Dirichlet-Neumann写像から2つの移流項の係数が決定できることを示した(文献3).ヴァイスは,二相障害物問題及び燃焼理論に応用が可能な放物型方程式の特異極限問題を研究し,単調性公式と平均振動数の性質を用いることにより,自由境界のハウスドルフ次元の評価の導出に成功した(文献4).栄は,帯状領域上の反応拡散方程式系の解でパルス状プロファイルを持つものの挙動を解析し,速度の十分遅い進行パルス状局在解が存在するとき,それらの相互作用を記述する方程式を導出した.その結果,進行パルス解が互いに反発しあうことを理論的に証明した(文献5).谷口は,反応拡散系における特異摂動問題の定常解の安定性を調べるのに有効な手法である「特異極限固有値問題法」(SLEP法)を,非有界領域上の問題にも適用できるように拡張し,その成果を双安定型反応拡散系の平面状進行波の安定性解析に応用した(文献6).
著者
村井 隆文 内藤 久資 千代延 大造 小沢 哲也 舟木 直久 青本 和彦
出版者
名古屋大学
雑誌
一般研究(C)
巻号頁・発行日
1991

コンパクトリ-マン多様体上の調和写像に関連して現れる非線型楕円型方程式及び古典力学的ハミルトン系流体現象から現れる同種の非線型方程式を解析し、その幾何学的構造、確率論的解釈及び方程式自身の吟味を試みることが目標である.特に、これらの方程式の泡沫現象、爆発現象、安定性、境界条件の吟味等に焦点を合わせて研究を行っている.これらの幾何学的構造を明らかにし、確率論的意味付けを与えることは純粋数学としての重要性のみならず、応用の立場からも不可欠である.自然現象と照らし合わせながら問題設定、結果の吟味を行う必要がある研究代表者は、方程式の基本構造はその再生的構造が本質的であると考え、この立場から文献1、2(報告書欄11、上から順)をまとめた.楕円型方程式の基本構造は、対応する境界特異積分方程式と境界値問題に帰着する.この立場から、境界上のヒルベルト変換を導入しその構造と境界値条件の関連を調べた.青本氏は方程式の代数化を試みgー解析的立場から文献3,4,5を発表した.舟木氏は確率論的観点から流体力学的方程式(特に、ランダウ型方程式)の吟味とその考察を行い文献6をまとめた.小沢氏は幾何学的立場から、軌跡や安定性についての問題を量子的に定式化した.さらに多様体の埋蔵についての議論も行った.千代延氏は確率論的立場から、ラプラス型方程式の漸近挙動を解析した.内藤氏は微分幾何学的立場から、多様体上の熱力学的調和写象の安定性を議論した.