著者
西本 昌司
出版者
一般社団法人 日本地質学会
雑誌
地質学雑誌 (ISSN:00167630)
巻号頁・発行日
vol.126, no.7, pp.343-353, 2020-07-15 (Released:2020-10-15)
参考文献数
33
被引用文献数
1 1

名古屋城の石垣に使われている膨大な量の石材は,どこからどのようにして調達されたのだろうか.詳しくは分かっていないとはいえ,地質学の目で見ればおおよその見当がつく.名古屋城の石垣の特徴は,石材の岩石種がバラエティに富んでいることであり,様々な場所から運ばれたことを示している.それは,名古屋城が全国の大名が動員された天下普請によって築城されたことを反映していると思われる.そこで,地質学的な視点から名古屋城の石垣を見学することで,岩石と人々との関わりを感じてもらいたい.合わせて,近代建築として重要文化財となっている名古屋市役所に使われている石材も見学する.
著者
乾 睦子 西本 昌司
出版者
国士舘大学理工学部
雑誌
国士舘大学理工学部紀要 = TRANSACTIONS OF THE KOKUSHIKAN UNIVERSITY SCHOOL OF SCIENCE AND ENGINEERING (ISSN:18824013)
巻号頁・発行日
vol.13, pp.117-124, 2020-03-31

It is not so widely known that various kinds of marble had been quarried in Japan as building stone. Marble quarries were active in Japan until about the end of 1960's. Those marbles have been used for the interior finishing of many historic buildings in Tokyo. This is the investigation report on the domestic building stones used for the interiors (mantlepieces) in some of the historic western style houses in Tokyo, designed by Josiah Conder. The houses are: the Former Iwasaki Residence, the Former Shimazu Residence, and the Former Furukawa Residence. Completion of the houses was between 1896 to 1917. Provenance of the marble of the mantlepieces was identified non-destructively. Marbles from Ibaraki Prefecture, Gifu Prefecture, Iwate Prefecture, Yamaguchi Prefecture, and Tokyo Metropolis were identified. The result showed that quarrying of those marbles was active during those years. The investigation is significant for understanding the history of the use and logistics of building stones in Japan, which leads to righteous assessment of the cultural heritage.
著者
長谷川 精 吉田 英一 勝田 長貴 城野 信一 丸山 一平 南 雅代 淺原 良浩 西本 昌司 山口 靖 Ichinnorov Niiden Metcalfe Richard
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-05-11

Spherical Fe-oxide concretions on Earth, in particular in Utah, U.S.A, have been investigated as an analogue of hematite spherules discovered in Meridiani Planum on Mars, in order to support interpretations of water-rock interactions in early Mars. Although several formation mechanisms have been proposed for the concretions on Earth and Mars, it is still unclear whether these mechanisms are viable because a precise formation process and precursor of the Fe-oxide concretions are missing. Here, we show evidence that Fe-oxide concretions in Utah and newly discovered Fe-oxide concretions in Mongolia, had spherical calcite (CaCO3) concretions as precursors. Observed different formation stages of calcite and Fe-oxide concretions, both in the Navajo Sandstone, Utah, and the Djadokhta Formation, Mongolia, indicate the formation process of Fe-oxide concretions as follows: (1) calcite concretions initially formed by groundwater evaporation within aeolian sandstone strata; (2) the calcite concretions were dissolved by infiltrating Fe-rich acidic waters; and (3) mobilized Fe in acidic waters was fixed to form spherical FeO(OH) (goethite) crusts on the pre-existing spherical calcite concretion surfaces due to the pH-buffering dissolution reaction. The similarity between these Fe-oxide concretions on Earth and the hematite spherule occurrences in Meridiani Planum, combined with evidence of acid sulfate water influences on Mars, suggests that the Martian spherules also formed from dissolution of pre-existing carbonate concretions. Formation of recently discovered spherical-shaped nodules in Gale crater on Mars can also be explained by a similar process, although evidence of acid water influence is not obvious in lower strata of the Gale crater. The hematite spherules in Meridiani Planum and spherical nodules in Gale crater are possibly relics of carbonate minerals formed under a dense thick carbon dioxide atmosphere in the past.
著者
吉田 英一 山本 鋼志 長谷川 精 勝田 長貴 城野 信一 丸山 一平 南 雅代 浅原 良浩 山口 靖 西本 昌司 Ichinnorov Niiden Metcalfe Richard
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

海成堆積岩には,球状の炭酸塩コンクリーション (主にCaCO3)が普遍的に産出する. その形状は多くの場合,球状を成し,かつ非常に緻密で風化にも強く,またその内部から保存良好の化石を産する. しかし,なぜ球状をなすのか,なぜ保存良好な化石を内蔵するのかなど,その形成プロセスはほとんど不明であった.それら炭酸塩球状コンクリーションの成因や形成速度を明らかにすることを目的に,国内外の試料を用いて,産状やバリエーションについての多角的な調査・解析を行ってきた.その結果,生物起源の有機物炭素成分と堆積物空隙水中のカルシウムイオンが,急速(サイズに応じて数ヶ月~数年)に反応し,炭酸カルシウムとして沈殿しつつ成長していくことを明らかにした(Yoshida et al.,2015, 2018a).そのプロセスは,コンクリーション縁(反応縁)の幅(L cm)と堆積物中での重炭酸イオンの拡散係数(D cm2/s)及び反応速度(V cm/s)を用いてD = LVと単純化できることから,海成堆積物中の球状コンクリーションに対し,汎用的にその形成速度を見積もることができる(Yoshida et al.,2018a,b).また,風成層中においては,アメリカ・ユタ州のナバホ砂岩層中の球状鉄コンクリーションがよく知られているが,ゴビ砂漠やヨルダンの風成層中からも産出することを初めて確認した.これらの球状鉄コンクリーションは,風成層中の空隙水の蒸発に伴って成長した球状炭酸塩コンクリーションがコアとなり,鉄を含む酸性地下水との中和反応によって形成されることを明らかにした(Yoshida et al.,2018c).さらに,このような酸性水と炭酸塩との反応は,火星表面堆積層中で発見された球状鉄コンクリーションの生成メカニズムと同じである可能性がある(Yoshida et al.,2018c).本論では,これら球状の炭酸塩および鉄コンクリーションの形成メカニズムと,将来的な研究の展開について紹介する.
著者
隈 隆成 西本 昌司 村宮 悠介 吉田 英一
出版者
一般社団法人 日本地質学会
雑誌
地質学雑誌 (ISSN:00167630)
巻号頁・発行日
vol.129, no.1, pp.145-151, 2023-02-22 (Released:2023-02-21)
参考文献数
29
被引用文献数
1 1

Carbonate concretions occur in sedimentary rocks of widely varying geological ages throughout the world. Recently, more than 100 gigantic carbonate concretions with diameters ranging from 1 to 9 m have been identified along the Unosaki coast of Oga Peninsula, Akita Prefecture, Japan. The formation process of such gigantic concretions, some of which along the Unosaki coast contain whale bones, remains uncertain. A mineral composition analysis reveals that the major mineral of the concretions is dolomite. Considering the location of dolomite precipitation, their composition implies that the concretions were formed in a reducing environment in which sulfate ions were removed. Stable carbon and oxygen isotopic analysis reveals that the CaCO3 of whale bone and concretions contains light δ13C and heavy δ18O, suggesting that whale organic matter contributed to the formation of the concretions. The gigantic carbonate concretions were presumably formed by the accumulation and burial of whale carcasses with high sedimentation rates, and subsequent reaction of carbon decomposed by benthic and microbial activity with seawater.
著者
西本 昌司 吉田 英一 隈 隆成 渡部 晟 澤木 博之
出版者
一般社団法人 日本地質学会
雑誌
日本地質学会学術大会講演要旨 第128学術大会(2021名古屋オンライン) (ISSN:13483935)
巻号頁・発行日
pp.001, 2021 (Released:2022-05-31)

秋田県男鹿半島鵜ノ崎海岸は,中新統の西黒沢層直上にあたる女川層及び西黒沢層が露出する波食台で,女川層にはその上に侵食を免れた球〜繭形のコンクリーションが100個以上散在しており(渡部ほか, 2017),「小豆岩」と呼ばれている.コンクリーションのサイズは,径1〜3m程度のものが多いが,中には9mに達するものがある.これまで確認されただけでも,コンクリーションの3分の1程度が鯨骨化石を伴っている.これほど巨大かつ鯨骨のみを有するなコンクリーション群は,世界的にも珍しい.コンクリーション中に確認されているからは鯨骨は化石が見つかっており,主にヒゲクジラ類であることは報告されている(長澤ほか, 2018)が,これらコンクリーションの成因との関連について調査・議論した研究は未だなされていない. この鯨骨コンクリーション群の成因を解明するため,男鹿市ジオパーク推進協議会の協力のもと,調査とともにサンプリングを行い,粉末X線回折(XRD),炭素同位体比(δ13C),蛍光X線分析等の分析を行った.その結果,ところ、次のようなことがわかった.(1)コンクリーションを含む母岩は,珪質頁岩で炭酸塩をほとんど含まない. (2) コンクリーション自体は主にドロマイトであり,一部にカルサイトを含むものも認められる. (3)コンクリーションのδ13C は-15‰前後と低く,生物起源と考えられる. (4)コンクリーション中に見られる層理や鯨骨の配置は,周囲の層理と調和的である. (5)割れて内部が見えるコンクリーションの中心部に椎骨や下顎骨が認められるが,それ以外の生物化石は確認できない. これほど巨大なコンクリーションが形成されるためには,炭素を供給するソースとなる生物体(鯨骨)が運搬され,速やかに海底堆積物中に埋もれる必要がある.女川層は海盆に堆積したタービサイトと考えられている(例えば, Tada, 1994)ので,コンクリーションの炭素源である多孔質で油脂等の有機物を豊富に含む鯨骨(椎骨部分が多い)が,混濁流によって埋没したと考えるのが妥当である.その後,有機物の分解によって鯨骨からCO32-が放出され,海水中のMg2+やCa2+と反応しドロマイトが沈澱したと考えられる.ドロマイトの沈殿には低SO42-濃度が必要(松田, 2006)で,コンクリーション形成場としてSO42-が消費されるような環境が想定される.女川層中の珪質頁岩はもともと珪藻の遺骸が主体(鹿野, 1979)で有機物が多く,嫌気的環境で硫酸還元バクテリアにより硫酸イオンが消費されていた可能性が高い. 以上のことから,この巨大鯨骨コンクリーション群は,深海に沈んだ複数の鯨骨が混濁流によって埋没した後,鯨骨を中心に主にドロマイトが沈澱して形成されたものと考えられる.謝辞現地調査にあたり,男鹿市ジオパーク推進班並びに男鹿半島・大潟ジオパークガイドの会ご協力いただいた.ここに記して謝意を表する.文献渡部 晟・澤木博之・渡部 均 (2017) 秋田県男鹿半島鵜ノ崎の中・上部中新統(西黒沢層・女川層)に 含まれる炭酸塩コンクリーション中の脊椎動物化石の産状. 秋田県立博物館研究報告 42, 6〜17.長澤一雄・渡部晟・澤木博之・渡部均 (2018) 秋田県男鹿半島鵜ノ崎海岸の中新統コンクリーションより多数の鯨類化石を発見. 日本古生物学会2018年年会. 鹿野和彦 (1979) 女川層珪質岩の堆積作用と続成作用. 東北大学博士論文 291p.松田博貴 (2006) ドロマイトの形成過程とドロマイト化作用. Jour. Soc. Inorg. Mater. Japan. 13, 245-252.Tada, R. (1994) Paleoceanographic evolution of the Japan Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 487–508.
著者
河原 弘和 吉田 英一 山本 鋼志 勝田 長貴 西本 昌司 梅村 綾子 隈 隆成
雑誌
日本地質学会第128年学術大会
巻号頁・発行日
2021-08-14

【背景】 岩石と地下水の反応で生じるリーゼガング現象は、岩石中に特徴的なバンド模様を展開する。近年、そのバンドが岩石-流体反応の化学的特性や反応のタイムスケールを推測する手がかりになると指摘されている[1]。 豪州北部キンバレー地域東部に産するゼブラロックは、リーゼガングバンドの一例として知られる。ゼブラロックはエディアカラ紀のシルト岩層中にレンズ状に産し、酸化鉄鉱物(赤鉄鉱)からなる数mm〜2 cm幅の赤褐色のバンド模様を示す。ゼブラロックが産する露頭は不連続ながら50 km以上に渡って分布し、広域の地質イベントに伴って生じた可能性がある。これまで、ゼブラロックに関する研究は数例あるが[2][3]、その形成プロセスは未解明である。 本研究では、ゼブラロックの成因を基に鉄バンド形成時の岩石-流体反応の化学的条件を述べる。さらに、ゼブラロック形成に関連した地質イベントや鉄バンドの金属鉱床探査への応用の可能性を提案する。【結果】 薄片観察、XRD分析及びラマン分光分析の結果、ゼブラロックの主要構成鉱物は、極細粒の石英粒子及び粘土鉱物(カオリナイト、明礬石)である。特に粘土鉱物について、ほぼ明礬石からなるゼブラロックが本研究初めて記載され、(1)カオリナイト (Kao) に富むタイプと、(2)明礬石 (Alu) に富むタイプの2種類に分類された。XRF分析による両タイプの全岩組成は明瞭に異なり、特に鉄バンドのFe濃度は、Kaoタイプが~9%、Aluが~30%と大きな差が認められた。 XGT分析による元素マッピングでは、鉄バンド中のFe濃度は一様ではなく、バンドの片側に偏在した非対称の濃度ピークとして分布している。この傾向は両タイプのゼブラロックで共通して認められ、一つのサンプル中におけるピークの偏りは全て同じ方向であった。【考察】 ゼブラロックの粘土鉱物組み合わせの違いは、高硫化系浅熱水鉱床の周囲で、熱水の温度やpHの違いに応じて発達する変質分帯(珪化-明礬石帯及びカオリナイト帯)とよく一致している。これはゼブラロックが酸性熱水変質を被ったことを示している。さらに、Kaoタイプに比べてAluタイプに高濃度に含まれる鉄バンドのFeの存在は、Feの溶解度の温度依存性を反映し、Aluタイプの形成に関与した流体の方がより高温であったことを示唆する。実際に、変質分帯において、明礬石帯はカオリナイト帯より熱水系源に近く、より高温(かつ低pH)の流体が関与している。これらの結果から、ゼブラロックの粘土鉱物組み合わせとFe濃度の違いは熱水系のモデルと調和的であり、酸性熱水変質とバンド形成は同じイベントで生じたと考えられる。 ゼブラロックの元素マップで認められた鉄バンド中のFe濃度ピークは、浸透した流体と原岩との反応による鉄沈殿のリアクションフロントと見なすことができる。これは、Feを含む酸性熱水流体が原岩の堆積岩中に初生的に含まれていた炭酸塩鉱物との中和反応し、それに伴うpH上昇で、流体中のFeが酸化沈澱したことで説明することできる[4]。なお、ゼブラロック中に炭酸塩鉱物はほぼ含まれていないが、同層準の他地域の露頭では炭酸塩鉱物の存在が確認されている。 ゼブラロック形成に関与した熱水活動の候補として、豪州北部に分布するカンブリア紀のカルカリンジ洪水玄武岩の活動が挙げられる。その活動時期は初期−中期カンブリア紀の大量絶滅とほぼ同時期で、地球規模で表層環境に影響を与えたイベントとして注目されている。本研究地域では、ゼブラロックを胚胎する堆積岩層において、それより上位の年代で生じた火成活動はこの一度だけであることも本知見を支持する。【結論】 本研究によって、ゼブラロックの成因について以下の点が明らかとなった:・ゼブラロックは酸性熱水活動に関連して形成した・鉄バンドは、鉄を含む酸性熱水と原岩中の炭酸塩鉱物の中和反応によるpH緩衝によって生じたと考えられる・ゼブラロックの形成に関与した熱水活動は、カンブリア紀のカルカリンジ洪水玄武岩と関連する可能性が高い また、鉄バンド中の一方向のFe濃度ピークの偏りは浸透した流体の流向を示している[1]。従って、流向を逆に辿ることで、熱水金属鉱床が賦存することのある熱水系の中心の方向を推測できる可能性がある。熱水変質分帯と熱水の流向の両方を記録するゼブラロックは、熱水鉱床探査の有効な手がかりになると期待される。【文献】 [1] Yoshida et al., 2020: Chem. Geol. [2] Loughnan & Roberts, 1990: Aust. Jour. of Earth Sci. [3] Retallack, 2020: Aust. Jour. of Earth Sci. [4] Yoshida et al., 2018: Science Advances