著者
関口 涼平 高橋 治久 堀田 一弘
雑誌
研究報告数理モデル化と問題解決(MPS)
巻号頁・発行日
vol.2009-MPS-75, no.23, pp.1-6, 2009-09-03

本論文では,カーネル判別分析 (KDA) に基づいた新しい多クラス識別器を提案する.KDA は主にパターン識別の前処理として用いられ,線形判別分析を使う場合に比べ良い識別性能が出せることが知られている.しかしながら,その性能は SVM と同様カーネルパラメータに大きく依存し,学習における最適なカーネルパラメータを導くには膨大な事前実験を必要とする.このため学習そのものよりも事前実験に要する計算量が膨大になり応用の障害になっている.本論文では,KDA に対し,分離度の理論に基づいて最適なカーネルパラメータを自動決定するアルゴリズムを提案し,計算機実験によりその性能を評価する.SVM との計算機実験による比較により,提案手法が少ない計算時間でより良い性能を達成できることを示す.
著者
岸本 貴之 高橋 治久 堀田 一弘
出版者
一般社団法人情報処理学会
雑誌
研究報告自然言語処理(NL) (ISSN:09196072)
巻号頁・発行日
vol.2009, no.2, pp.27-32, 2009-01-15

本稿では,日本語形態素解析の精度を,条件付確率場 (CRF) による係り受け解析を用いて,改善する方法を提案する.従来の確率モデルによる形態素解析は,一般的に,1 個または 2 個前までの単語の品詞情報の相関関係によって,最適な候補を絞り込むというやり方を行っていた.しかし,それだけでは解析できない事例が存在しており,もっと広い範囲での単語の相関や,構文関係などを考慮に入れたモデルを考える必要がある.本稿では,形態素解析結果の候補に対し,係り受け解析を行い,その尤度を最大にする形態素解析結果により係り受け解析を選択する方法が,精度改善に有効であることを,従来法との比較実験により示す.This paper presents a method of improving Japanese morphological analysis via Conditional Random Fields (CRFs) using the dependency analysis. Many existing probabilistic methods select a correct tokens by the correlation analysis between adjoining words and their part-of-speech. However, some instances cannot be correctly analyzed only with the correlation between adjoining words. In order to improve the accuracy, it would be needed to take into account correlation of words in wider range as well as syntactical features. We show that maximizing the likelihood of the dependency analysis for candidates of correct tokens improves the accuracy by computer experiments.
著者
顧 漢忠 高橋 治久
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. NC, ニューロコンピューティング
巻号頁・発行日
vol.95, no.346, pp.63-70, 1995-10-28

本論文では、概念学習における学習曲線を評価するために仮説検定不等式を直接適用する近似手法を導入し、学習アルゴリズムの学習曲線の解析を行う。このため、最悪ではないが、Gibbs学習アルゴリズムよりも汎化性能において劣り、しかもoverfitting問題に関する評価に適するill-posed学習アルゴリズムを導入し、解析を行う。本文における学習曲線の上界の評価においてはVC次元ではなく、ネットワーク上でのパラメーター数以下の値を持つ係数(Regular Interpolation Dimension)が現れる。このためVC理論よりも良い上界となり、しかも、統計物理的な手法よりも一般的な結果が得られる。
著者
富田 悦次 高橋 治久 西野 哲朗 若月 光夫 垂井 淳
出版者
電気通信大学
雑誌
基盤研究(C)
巻号頁・発行日
2007

最大クリークを抽出する新しいアルゴリズムMCSを開発し,格段に高速であることを明らかにした.これにより,従来では100日以上かかっても解けなかった幾つかの問題を100秒以内で解くことに成功した.最大クリーク問題が多項式時間的に可解となる基本的結果も確立した.また,最大クリーク抽出アルゴリズムがハイパーグラフにおいても効率的に稼働する様に拡張した.更に,これらのアルゴリズムをデータマイニングなどの実問題に応用して有効な結果を得た.