著者
Mariko Ohnuma Kosuke Ito Karin Hamada Ami Takeuchi Kenji Asano Takahiro Noda Akira Watanabe Akiko Hokura Hiroshi Teramura Fuminori Takahashi Hiromi Mutsuro-Aoki Koji Tamura Hiroaki Shimada
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.40, no.3, pp.219-227, 2023-09-25 (Released:2023-09-25)
参考文献数
34
被引用文献数
2

Glucose chains in starch are phosphorylated and contribute to structural stabilization. Phosphate groups contained in starch also play a role in retaining moisture. α-Glucan water dikinase 1 (GWD1) is involved in the phosphorylation of glucose chains in starch. In this study, we generated potato mutants of the GWD1 gene using the CRISPR/dMac3-Cas9 system. Observation of the phenotypes of the GWD1-deficient mutants revealed their physiological roles in tuber starch formation. The 4-allele mutants showed growth retardation and a delay in tuber formation. A significant decrease in phosphorus content was detected in the tuber starch of the gwd1 mutant. This mutant starch showed a higher amylose content than the wild-type starch, whereas its gelatinization temperature was slightly lower than that of the WT starch. The peak viscosity of the mutant starch was lower than that of the WT starch. These observations revealed that the starch of the gwd1 mutants had peculiar and unique properties compared to those of WT, sbe3 and gbss1 mutant starches. The amount of tissue-released water due to freeze–thawing treatment was determined on tubers of the gwd1 mutant and compared with those of WT and the other mutants. Significantly less water loss was found in the gwd1, sbe3 and gbss1 mutant tubers than in the WT tubers. Our results indicate that the GWD1 gene is not only important for potato growth, but also largely effective for the traits of tuber starch.
著者
Akiko Yamada Akira Watanabe Takenori Yamamoto
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.20, no.1, pp.e200004, 2023 (Released:2023-02-04)
参考文献数
27
被引用文献数
1

Mitochondria play an important role in energy conversion as well as in intracellular calcium (Ca2+) storage. Ca2+ uptake from the cytosol to the mitochondria is mediated by the calcium uniporter, which functions as a Ca2+ ion channel. However, the molecular composition of this uniporter has remained unclear until recently. The Ca2+ ion channel consists of seven subunits. The yeast reconstitution technique revealed that the mitochondrial calcium uniporter (MCU) and essential MCU regulatory element (EMRE) are the core subunits of the complex. Furthermore, detailed structure-function analyses of the core subunits (MCU and EMRE) were performed. In this review, the regulatory mechanism of mitochondrial Ca2+ uptake is discussed.
著者
Chie Watanabe Yoshifumi Kimizuka Yuji Fujikura Takaaki Hamamoto Akira Watanabe Takashi Yaguchi Tomoya Sano Ryohei Suematsu Yoshiki Kato Jun Miyata Susumu Matsukuma Akihiko Kawana
出版者
The Japanese Society of Internal Medicine
雑誌
Internal Medicine (ISSN:09182918)
巻号頁・発行日
pp.7639-21, (Released:2021-10-26)
参考文献数
29
被引用文献数
3

A 69-year-old woman who had undergone renal transplantation and was receiving sulfamethoxazole/trimethoprim (ST) developed pulmonary nocardiosis. To our knowledge, this is the first report of the identification of Nocardia elegans using nanopore sequencing, supported by 16S rDNA capillary sequencing findings. Chest computed tomography performed after ST initiation revealed significant improvement of the pulmonary shadows compared to previous findings. We herein report the value of nanopore sequencing for rapid identification of rare pathogens, such as Nocardia elegans. Furthermore, our findings suggest that Nocardia may infect even patients receiving ST, which is currently the most effective prophylactic drug.