著者
Satoru Tsugawa Norihiro Kanda Moritaka Nakamura Tatsuaki Goh Misato Ohtani Taku Demura
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.443-450, 2020-12-25 (Released:2020-12-25)
参考文献数
10
被引用文献数
2 4

Plant shoots can bend upward against gravity, a behavior known as shoot gravitropism. The conventional quantification of shoot bending has been restricted to measurements of shoot tip angle, which cannot fully describe the spatio-temporal bending process. Recently, however, advanced imaging analyses have been developed to quantify in detail the spatio-temporal changes in inclination angle and curvature of the shoot. We used one such method (KymoRod) to analyze the gravitropism of the Arabidopsis thaliana inflorescence stem, and successfully extracted characteristics that capture when and where bending occurs. Furthermore, we implemented an elastic spring theoretical model and successfully determined best fitted parameters that may explain typical bending behaviors of the inflorescence stem. Overall, we propose a data-model combined framework to quantitatively investigate shoot gravitropism in plants.
著者
Ryusuke Nakai Takashi Azuma Yosuke Nakaso Shinichiro Sawa Taku Demura
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.437-442, 2020-12-25 (Released:2020-12-25)
参考文献数
33
被引用文献数
1 1

Although magnetic resonance imaging (MRI) is a useful technique, only a few studies have investigated the dynamic behavior of small subjects using MRI owing to constraints such as experimental space and signal amount. In this study, to acquire high-resolution continuous three-dimensional gravitropism data of pea (Pisum sativum) sprouts, we developed a small-bore MRI signal receiver coil that can be used in a clinical MRI and adjusted the imaging sequence. It was expected that such an arrangement would improve signal sensitivity and improve the signal-to-noise ratio (SNR) of the acquired image. All MRI experiments were performed using a 3.0-T clinical MRI scanner. An SNR comparison using an agarose gel phantom to confirm the improved performance of the small-bore receiver coil and an imaging experiment of pea sprouts exhibiting gravitropism were performed. The SNRs of the images acquired with a standard 32-channel head coil and the new small-bore receiver coil were 5.23±0.90 and 57.75±12.53, respectively. The SNR of the images recorded using the new coil was approximately 11-fold higher than that of the standard coil. In addition, when the accuracy of MR imaging that captures the movement of pea sprout was verified, the difference in position information from the optical image was found to be small and could be used for measurements. These results of this study enable the application of a clinical MRI system for dynamic plant MRI. We believe that this study is a significant first step in the development of plant MRI technique.
著者
Takumi Higaki Hidenobu Mizuno
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.429-435, 2020-12-25 (Released:2020-12-25)
参考文献数
33
被引用文献数
1 5

In most dicotyledonous plants, leaf pavement cells exhibit complex jigsaw puzzle-like cell morphogenesis during leaf expansion. Although detailed molecular biological information and mathematical modeling of this jigsaw puzzle-like cell morphogenesis are now available, a full understanding of this process remains elusive. Recent reports have highlighted the importance of three-dimensional (3D) structures (i.e., anticlinal and periclinal cell wall) in understanding the mechanical models that describe this morphogenetic process. We believe that it is important to acquire 3D shapes of pavement cells over time, i.e., acquire and analyze four-dimensional (4D) information when studying the relationship between mechanical modeling and simulations and the actual cell shape. In this report, we have developed a framework to capture and analyze 4D morphological information of Arabidopsis thaliana cotyledon pavement cells by using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry. The 4D cell models allowed us to perform time-lapse 3D morphometrical analysis, providing detailed quantitative information about changes in cell growth rate and shape, with cellular complexity observed to increase during cell growth. The framework should enable analysis of various phenotypes (e.g., mutants) in greater detail, especially in the 3D deformation of the cotyledon surface, and evaluation of theoretical models that describe pavement cell morphogenesis using computational simulations. Additionally, our accurate and high-throughput acquisition of growing cell structures should be suitable for use in generating in silico model cell structures.
著者
Marcel Pascal Beier Satoru Tsugawa Taku Demura Toru Fujiwara
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.423-428, 2020-12-25 (Released:2020-12-25)
参考文献数
25
被引用文献数
1 4

While it is known that plant roots can change their shapes to the stress direction, it remains unclear if the root orientation can change as a means for mechanical reinforcement. When stress in form of a unidirectional vibration is applied to cuttings of Populus nigra for 5 min a day over a period of 20 days, the root system architecture changes. The contribution of roots with a diameter larger than 0.04 cm increases, while the allocation to roots smaller than 0.03 cm decreases. In addition to the root diameter allocation, the root orientation in the stem proximity was analyzed by appearance and with a nematic tensor analysis in an attempt to calculate the average root orientation. The significant different allocation to roots with a larger diameter, and the tendency of roots to align in the vicinity of the stress axis (not significantly different), are indicating a mechanical reinforcement to cope with the received strain. This work indicates an adaptive root system architecture and a possible adaptive root orientation for mechanical reinforcement.
著者
Eri Akita Yaxiaer Yalikun Kazunori Okano Yuki Yamasaki Misato Ohtani Yo Tanaka Taku Demura Yoichiroh Hosokawa
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.417-422, 2020-12-25 (Released:2020-12-25)
参考文献数
23
被引用文献数
1 4

Atomic force microscopy (AFM) can measure the mechanical properties of plant tissue at the cellular level, but for in situ observations, the sample must be held in place on a rigid support and it is difficult to obtain accurate data for living plants without inhibiting their growth. To investigate the dynamics of root cell stiffness during seedling growth, we circumvented these problems by using an array of glass micropillars as a support to hold an Arabidopsis thaliana root for AFM measurements without inhibiting root growth. The root elongated in the gaps between the pillars and was supported by the pillars. The AFM cantilever could contact the root for repeated measurements over the course of root growth. The elasticity of the root epidermal cells was used as an index of the stiffness. By contrast, we were not able to reliably observe roots on a smooth glass substrate because it was difficult to retain contact between the root and the cantilever without the support of the pillars. Using adhesive to fix the root on the smooth glass plane overcame this issue, but prevented root growth. The glass micropillar support allowed reproducible measurement of the spatial and temporal changes in root cell elasticity, making it possible to perform detailed AFM observations of the dynamics of root cell stiffness.
著者
Yoshinori Abe Keisuke Meguriya Takahisa Matsuzaki Teruki Sugiyama Hiroshi Y. Yoshikawa Miyo Terao Morita Masatsugu Toyota
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.405-415, 2020-12-25 (Released:2020-12-25)
参考文献数
59
被引用文献数
1 7

Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ=1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi network were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.
著者
Kaori Matsuyama Naoki Sunagawa Kiyohiko Igarashi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.397-403, 2020-12-25 (Released:2020-12-25)
参考文献数
43
被引用文献数
1 4

The study of Carbohydrate-Active enZymes (CAZymes) associated with plant cell wall metabolism is important for elucidating the developmental mechanisms of plants and also for the utilization of plants as a biomass resource. The use of recombinant proteins is common in this context, but heterologous expression of plant proteins is particularly difficult, in part because the presence of many cysteine residues promotes denaturation, aggregation and/or protein misfolding. In this study, we evaluated two phenotypes of methylotrophic yeast Pichia pastoris as expression hosts for expansin from peach (Prunus persica (L.) Batsch, PpEXP1), which is one of the most challenging targets for heterologous expression. cDNAs encoding wild-type expansin (PpEXP1_WT) and a mutant in which all cysteine residues were replaced with serine (PpEXP1_CS) were each inserted into expression vectors, and the protein expression levels were compared. The total amount of secreted protein in PpEXP1_WT culture was approximately twice that of PpEXP1_CS. However, the amounts of recombinant expansin were 0.58 and 4.3 mg l−1, corresponding to 0.18% and 2.37% of total expressed protein, respectively. This 13-fold increase in production of the mutant in P. pastoris indicates that the replacement of cysteine residues stabilizes recombinant PpEXP1.
著者
Takuma Yoshioka Yunosuke Itagaki Yutaka Abe Nobuo Kawahara Yukihiro Goda Yoshihiro Ozeki Akiyo Yamada
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.183-186, 2021-03-25 (Released:2021-03-25)
参考文献数
15
被引用文献数
1

A stable salt-tolerant cell-suspension culture of Alluaudiopsis marnieriana was established, and intracellular compounds that accumulated under salt-stress conditions were investigated. HPLC/MS, and NMR analyses indicated that enhanced accumulation of coniferin was found during the growth phase in medium containing 150 mM NaCl. Coniferin or its derivatives may play an important role in salt-tolerance mechanisms in this plant.
著者
Takayuki Hata Kazuki Mukae Soichrou Satoh Mitsuhiro Matsuo Junichi Obokata
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.179-182, 2021-03-25 (Released:2021-03-25)
参考文献数
16
被引用文献数
2

The Arabidopsis T87 cell line has been widely used in both basic and biotechnological plant sciences. Agrobacterium-mediated transformation of this cell line was reported to be highly efficient when precultured in Gamborg’s B5 medium for a few days. However, because we could not obtain the expected efficiency in our laboratory, we further examined the preculture conditions of Arabidopsis T87 cells in the Agrobacterium-mediated transformation. As a result, we found that preculture in an excess amount of Murashige and Skoog (MS) macronutrients before cultivation in the B5 medium enhanced the transformation efficiency up to 100-fold, based on the transformed callus number on selective gellan gum plates. In this study, transformants were labeled with green fluorescent protein (GFP), and we found multiple fluorescent spots on individual transgenic calli. Therefore, the actual number of transgenic clones seems much more than that of transgenic calli. In our MS macronutrient-rich culture condition, T87 cells tended to aggregate and formed bigger cell clumps, a change that might be related to the enhancement of transformation efficiency. Based on these results, we report an improved protocol of Agrobacterium-mediated transformation of Arabidopsis T87 cells with high efficiency.
著者
Kazutoshi Yamagishi Yoshio Kikuta
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.173-178, 2021-03-25 (Released:2021-03-25)
参考文献数
33
被引用文献数
4

Epigenetic modifications, including DNA methylation, are involved in the regulatory mechanisms of gene expression in animals and plants. In this study, we investigated whether the action of 5-azacytidine (5-aza-Cd), which is a well-known DNA methylation inhibitor, in suspension-cultured tobacco cells is affected by treatment with nucleoside derivatives of 5-methylcytosine (5-mCs), namely 5-methylcytidine (5-mCd) and 5-methyl-2′-deoxycytidine (5-mdCd). In a tobacco cell line, 5-aza-Cd treatment reactivated an epigenetically silenced transgene containing the cauliflower mosaic virus 35S promoter fused to the β-glucuronidase coding region and the nopaline synthase polyadenylation signal. The reactivation was evident on the fifth day of treatment and was augmented during culture with application of 5-aza-Cd at every subcultivation. This treatment, provided only once in the initial culture, resulted in transient transgene reactivation, followed by attenuation of its activity. The reactivation induced by 5-aza-Cd was suppressed by concomitant treatment with either 5-mCd or 5-mdCd. These results suggest that the 5-mCs derivatives inhibit and/or reverse 5-aza-Cd-induced reactivation of a silent transgene in tobacco cells.
著者
Syuuto Toyoda Morihiro Oota Hayato Ishikawa Shinichiro Sawa
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.157-159, 2021-03-25 (Released:2021-03-25)
参考文献数
18

Root-knot nematodes (RKNs, genus Meloidogyne) are a class of plant parasites that seek out and infect the roots of many plant species. The identification of RKN attractants can be used in agriculture in conjunction with nematode-trapping technology to redirect RKN movements and eventually reduce their prevalence in the field. Here, we discovered that some commercial silica gels can attract nematodes. Silica gels that attract nematodes contain calcium sulfate. Calcium sulfate and calcium carbonate showed strong nematode attraction properties. When plant seeds were surrounded by calcium sulfate or calcium carbonate, nematodes were not attracted to the plant seeds. We propose that calcium sulfate and calcium carbonate can be used in agriculture as a novel material to trap RKN.
著者
The Su Hlaing Haruka Kondo Ayumi Deguchi Kazumitsu Miyoshi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.145-152, 2021-03-25 (Released:2021-03-25)
参考文献数
53
被引用文献数
1

We examined the effects of five antimitotic agents using Antirrhinum majus L. ‘Maryland True Pink’ on the induction of adventitious shoots resulted in increase of frequencies of chromosome doubling without plant growth regulators. Seeds were treated in vitro with 0, 16.5, 32.9, 65.8, 131.6, or 263.2 µM oryzalin (ORY), amiprofos-methyl (APM), butamifos (BUT), or propham (IPC) or 800, 1,600, 3,200, 6,400, or 12,800 µM colchicine (COL) for 7 day. ORY, COL and APM promoted induction of adventitious shoots on the hypocotyls at maximum frequencies of 57.6% with 16.5 µM ORY, 5.6% with 800 µM COL and 88.8% with 131.6 µM APM. ORY and COL also induced adventitious shoots on the epicotyls adjacent to the cotyledons, particularly at high concentrations, with a maximum frequency of 26.0% at 12,800 µM COL. APM treatment increased frequencies of tetraploids from 0.0 to 93.1%, with a positive correlation between the frequency and concentration. By contrast, ORY and COL induced tetraploids at frequencies of 16.0 to 54.6% and 4.0 to 59.4%, respectively, with peaks at both low and high concentrations of each. Correlation analysis revealed that frequencies of adventitious shoot formation could be useful as an index for the induction of tetraploids. These results showed that three of the antimitotic agents tested induced both adventitious shoot and tetraploid without plant growth regulators, indicating that antimitotic action may play a common role in the induction of adventitious shoot.
著者
Takayuki Inui Noriaki Kawano Daisuke Araho Yukiyoshi Tamura Nobuo Kawahara Kayo Yoshimatsu
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.127-135, 2021-03-25 (Released:2021-03-25)
参考文献数
22
被引用文献数
1

Glycyrrhiza plants are important resources for sweeteners and medicines, because underground parts of them contain glycyrrhizic acid (GL), which has sweet taste and various pharmacological activities (ex. anti-inflammatory, antiallergy, antiviral activity, etc.). Although such importance of them, their supply still depends principally on the collection of wild plants. Therefore, it is an important issue to develop stable and efficient production system of Glycyrrhiza plants. To overcome this problem, we established the hydroponic cultivation system of Glycyrrhiza uralensis and selected superior G. uralensis clones with high-GL contents in the containment greenhouse. In this study, we aimed to develop a method of selecting these superior G. uralensis clones by DNA sequence polymorphisms in biosynthetic genes. Among the DNA sequences of GL biosynthetic key enzyme gene (CYP88D6), we found Glycyrrhiza species and clone-specific polymorphisms in intronic regions. By using these polymorphisms, discrimination among Glycyrrhiza species and G. uralensis clones became possible. Furthermore, the appearance frequency of superior clone-specific alleles in cloned CYP88D6 sequences was correlated with GL contents in crude drugs collected from the Japanese market. We also observed the tendency that G. uralensis seedlings having superior clone-specific alleles of CYP88D6 gene showed higher secondary metabolite productivity than those without the alleles. These results indicated that superior clone-specific alleles of CYP88D6 gene could be applied as DNA markers for selecting G. uralensis clones accumulating high secondary metabolites.
著者
Shugo Maekawa Shuichi Yanagisawa
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.117-125, 2021-03-25 (Released:2021-03-25)
参考文献数
45
被引用文献数
1

Mutations that reduce the expression of ribosomal proteins (RPs) or limit the activity of ribosome biogenesis-related factors frequently cause physiological and morphological changes in Arabidopsis. Arabidopsis OLI2/NOP2A, a homolog of yeast Nop2, encodes a nucleolar methyltransferase that is required for the maturation of the 25S ribosomal RNA of the 60S large ribosomal subunit. Mutant oli2 plants exhibit pointed leaves and shortened primary roots. In this study, detailed phenotypic analysis of oli2 mutant and OLI2 overexpressor lines revealed a range of phenotypes. Seeds produced by oli2 mutant and OLI2 overexpressor plants were lighter and heavier than wild-type seeds, respectively. Seeds of the oli2 mutant also showed delayed germination, whereas seeds from the OLI2 overexpressor lines germinated earlier than the wild type. The oli2 mutant also had fewer and shorter lateral roots than the wild type. The lateral root development phenotype in the oli2 mutant was similar to that of auxin-related mutants, but was not enhanced by exogenously supplied auxin. Furthermore, the oli2 mutant and OLI2 overexpressor lines were hypersensitive and less sensitive to high concentrations of sugar, respectively. Split-GFP-based bimolecular fluorescence complementation analysis revealed that OLI2 interacted with a nucleolar protein, BRX1-2, which is involved in rRNA processing for the large ribosomal subunit. Moreover, overexpression of OLI2 and BRX1-2 caused similar morphological changes, including extension of plant lifespans. These results suggest that the functions of OLI2 and its interactor BRX1-2 are intimately associated with a range of developmental events in Arabidopsis.
著者
Keiko Kobayashi Kae Akita Masashi Suzuki Daisaku Ohta Noriko Nagata
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.109-116, 2021-03-25 (Released:2021-03-25)
参考文献数
35
被引用文献数
4

The exine acts as a protectant of the pollen from environmental stresses, and the pollen coat plays an important role in the attachment and recognition of the pollen to the stigma. The pollen coat is made of lipidic organelles in the tapetum. The pollen coat is necessary for fertility, as pollen coat-less mutants, such as those deficient in sterol biosynthesis, show severe male sterility. In contrast, the exine is made of sporopollenin precursors that are biosynthesized in the tapetum. Some mutants involved in sporopollenin biosynthesis lose the exine but show the fertile phenotype. One of these mutants, cyp704b1, was reported to lose not only the exine but also the pollen coat. To identify the cause of the fertile phenotype of the cyp704b1 mutant, the detailed structures of the tapetum tissue and pollen surface in the mutant were analyzed. As a result, the cyp704b1 mutant completely lost the normal exine but had high-electron-density granules localized where the exine should be present. Furthermore, normal lipidic organelles in the tapetum and pollen coat embedded between high-electron-density granules on the pollen surface were observed, unlike in a previous report, and the pollen coat was attached to the stigma. Therefore, the pollen coat is necessary for fertility, and the structure that functions like the exine, such as high-electron-density granules, on the pollen surface may play important roles in retaining the pollen coat in the cyp704b1 mutant.
著者
Hamako Sasamoto Sakae Suzuki Hossein Mardani-Korrani Yutaka Sasamoto Yoshiharu Fujii
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.101-107, 2021-03-25 (Released:2021-03-25)
参考文献数
30
被引用文献数
2

Allelopathic activities of three carotenoids of a natural pigment group, neoxanthin, crocin and β-carotene, were assayed by the protoplast co-culture method with digital image analysis (DIA-PP method). Effects on three different growth stages of lettuce protoplasts, i.e., cell wall formation, cell division, and yellow pigment accumulation, were investigated using 96-well culture plates. Cell division was inhibited 65–95% by all three carotenoids at 33–100 µM. Inhibition of cell division stage was stronger than at the cell wall formation stage in neoxanthin, and the water-soluble carotenoid, crocin, whose yellow pigment was incorporated into the vacuole of lettuce protoplasts. Neoxanthin at 33 µM and crocin at higher than 100 µM inhibited more than 100% of the yellow pigment accumulation. By contrast, at low concentrations (0.01–1 µM) β-carotene stimulated growth at the cell division stage. At high concentrations of β-carotene (100–500 µM), inhibition was prominent at all three stages, and also in neighboring wells of zero control, which suggested emission of a volatile compound by β-carotene. They were compared with the report of the volatile compound, tulipalin A. Differences in patterns of inhibition of carotenoids on lettuce protoplast growth were compared with reports of another natural pigment, anthocyanin, and anthocyanin-containing red callus cultured in the light, and with that of neoxanthin-containing yellow callus cultured in the dark.
著者
Ken-ichiro Taoka Zenpei Shimatani Koji Yamaguchi Mana Ogawa Hiromi Saitoh Yoichi Ikeda Hiroko Akashi Rie Terada Tsutomu Kawasaki Hiroyuki Tsuji
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.89-99, 2021-03-25 (Released:2021-03-25)
参考文献数
44
被引用文献数
7

Luciferases have been widely utilized as sensitive reporters to monitor gene expression and protein-protein interactions. Compared to firefly luciferase (Fluc), a recently developed luciferase, Nanoluciferase (NanoLuc or Nluc), has several superior properties such as a smaller size and stronger luminescence activity. We compared the reporter properties of Nluc and Fluc in rice (Oryza sativa). In both plant-based two-hybrid and split luc complementation (SLC) assays, Nluc activity was detected with higher sensitivity and specificity than that with Fluc. To apply Nluc to research involving the photoperiodic regulation of flowering, we made a knock-in rice plant in which the Nluc coding region was inserted in-frame with the OsMADS15 gene, a target of the rice florigen Hd3a. Strong Nluc activity in response to Hd3a, and in response to change in day length, was detected in rice protoplasts and in a single shoot apical meristem, respectively. Our results indicate that Nluc assay systems will be powerful tools to monitor gene expression and protein-protein interaction in plant research.
著者
Endang Ayu Windari Mei Ando Yohei Mizoguchi Hiroto Shimada Keima Ohira Yasuaki Kagaya Tetsuya Higashiyama Seiji Takayama Masao Watanabe Keita Suwabe
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.77-87, 2021-03-25 (Released:2021-03-25)
参考文献数
63
被引用文献数
18

Pollination is the crucial initial step that brings together the male and female gametophytes, and occurs at the surface of the stigmatic papilla cell in Arabidopsis thaliana. After pollen recognition, pollen hydration is initiated as a second critical step to activate desiccated mature pollen grains for germination, and thus water transport from pistil to pollen is essential for this process. In this study, we report a novel aquaporin-mediated water transport process in the papilla cell as a control mechanism for pollen hydration. Coupled with a time-series imaging analysis of pollination and a reverse genetic analysis using T-DNA insertion Arabidopsis mutants, we found that two aquaporins, the ER-bound SIP1;1 and the plasma membrane-bound PIP1;2, are key players in water transport from papilla cell to pollen during pollination. In wild type plant, hydration speed reached its maximal value within 5 min after pollination, remained high until 10–15 min. In contrast, sip1;1 and pip1;2 mutants showed no rapid increase of hydration speed, but instead a moderate increase during ∼25 min after pollination. Pollen of sip1;1 and pip1;2 mutants had normal viability without any functional defects for pollination, indicating that decelerated pollen hydration is due to a functional defect on the female side in sip1;1 and pip1;2 mutants. In addition, sip1;1 pip1;2 double knockout mutant showed a similar impairment of pollen hydration to individual single mutants, suggesting that their coordinated regulation is critical for proper water transport, in terms of speed and amount, in the pistil to accomplish successful pollen hydration.
著者
Naoya Sugi Quynh Thi Ngoc Le Makoto Kobayashi Miyako Kusano Hiroshi Shiba
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.67-75, 2021-03-25 (Released:2021-03-25)
参考文献数
43
被引用文献数
4

Heterosis refers to the improved agronomic performance of F1 hybrids relative to their parents. Although this phenomenon is widely employed to increase biomass, yield, and stress tolerance of plants, the underlying molecular mechanisms remain unclear. To dissect the metabolic fluctuations derived from genomic and/or environmental differences contributing to the improved biomass of F1 hybrids relative to their parents, we optimized the growth condition for Arabidopsis thaliana F1 hybrids and their parents. Modest but statistically significant increase in the biomass of F1 hybrids was observed. Plant samples grown under the optimized condition were also utilized for integrated omics analysis to capture specific changes in the F1 hybrids. Metabolite profiling of F1 hybrids and parent plants was performed using gas chromatography-mass spectrometry. Among the detected 237 metabolites, 2-oxoglutarate (2-OG) and malate levels were lower and the level of aspartate was higher in the F1 hybrids than in each parent. In addition, microarray analysis revealed that there were 44 up-regulated and 12 down-regulated genes with more than 1.5-fold changes in expression levels in the F1 hybrid compared to each parent. Gene ontology (GO) analyses indicated that genes up-regulated in the F1 hybrids were largely related to organic nitrogen (N) process. Quantitative PCR verified that glutamine synthetase 2 (AtGLN2) was upregulated in the F1 hybrids, while other genes encoding enzymes in the GS-GOGAT cycle showed no significant differences between the hybrid and parent lines. These results suggested the existence of metabolic regulation that coordinates biomass and N metabolism involving AtGLN2 in F1 hybrids.