著者
増渕 覚 町田 友樹
出版者
一般社団法人 日本物理学会
雑誌
日本物理学会誌 (ISSN:00290181)
巻号頁・発行日
vol.75, no.9, pp.550-558, 2020-09-05 (Released:2020-11-18)
参考文献数
63

60年ほど前に「原子を一つずつ配置して思い通りの物質を作れば,これまで考えられなかったほど多くの物性を引き出すことができる」と述べたのはリチャード・ファインマン教授でした.江崎玲於奈博士は半導体超格子を提案し,分子線エピタキシーによって「ボトムアップでナノサイズの人工物質を作る」という概念を実証しました.物質を構成する原子や分子を自在に積み上げて組み合わせることができれば,これまで見られなかった新しい電子物性を有する物質を創り出すことができる――物性科学を志した研究者であれば,このような想いを心に描いたことがあるのではないでしょうか.近年になり,グラファイトをはじめとする様々な二次元結晶が,スコッチテープを用いた剥離法により単原子層まで薄層化できるようになりました.剥離された原子層は様々な手法によって機械的に貼り合わせることができ,原子層単位で界面が制御された人工構造――ファンデルワールスヘテロ構造――が作製できます.接合界面における格子整合が不要であることから,様々な材料同士の組み合わせが実現でき,波動関数の混成と電子間相互作用によって,多彩な電子物性が発現します.例えば,結晶方位角のズレをθ~1.06°に正確に制御して単層グラフェンを二枚重ねると,両者のバンドの交点においてフラットバンドが形成され超伝導が発現します.グラフェンと六方晶窒化ホウ素を結晶方位を合わせて重ね,磁場を印加すると「ホフスタッターの蝶」と呼ばれるフラクタル状のバンドが形成されます.構成要素として利用可能な二次元結晶は20種類以上存在し,ファンデルワールスヘテロ構造は無限の可能性を秘めていると期待されます.これまで電子物性研究に用いられてきた最高品質のファンデルワールスヘテロ構造は,二次元結晶を剥離して貼り合わせるという極めて原始的な手法により作製されてきました.高品質な母結晶を剥離することが,最も不純物の取り込みが少ない試料作製法だからです.原子層を壊さずに重ねるため,過去10年間にわたり様々な手法が開発されてきました.ファンデルワールスヘテロ構造を舞台として物性科学研究をさらに進めるためには,それぞれの手法の特徴を理解し,これらを上手く組み合わせていくことが重要です.さらに最近,ロボティクス・機械学習・深層学習を用い,研究者が手作業で行ってきたファンデルワールスヘテロ構造の作製工程を自動化し,これまで考えられなかった複雑な試料を作製する研究が始まりつつあります.研究は今後,興味深い物性を示す組み合わせをシステマチックに探索する形へ移行していくと考えられます.その先には,物質を構成する原子や分子を自在に積み上げて組み合わせ,様々な機能を持つ材料を自在に設計するという,多くの科学者が抱く究極の夢が広がっています.
著者
齋藤 理一郎 長田 俊人 依光 英樹 町田 友樹 楠 美智子 長汐 晃輔 上野 啓司 塚越 一仁 若林 克法 越野 幹人
出版者
東北大学
雑誌
新学術領域研究(研究領域提案型)
巻号頁・発行日
2013-06-28

本新学術領域研究は、「人類史上最も薄い物質」である、一原子層の厚さしかない物質(以下原子層物質)を合成してきました。また合成した非常に薄い物質を使って、消費電力が非常に小さい電子デバイスや、光デバイスの作成と検証を行い、その社会における有用性を実証しました。さらに、異なる原子層物質を積み重ねることによって、今までにない物質(複合原子層物質)を人工的に合成し、超伝導や量子的な性質を持つ、新しい機能材料を開発することに成功いたしました。これらは、国際共同研究基金を用いて国際共同研究を推進することによって、新しい物質の開発を加速いたしました。
著者
白崎 良演 中村 浩章 羽田野 直道 町田 友樹 長谷川 靖洋
出版者
横浜国立大学
雑誌
萌芽研究
巻号頁・発行日
2005

我々は、2次元電子系がメゾスケールの大きさである場合、強磁場下で系のネルンスト係数に量子振動が見られる(量子ネルンスト効果)ことを平成17年度から平成18年度にかけて線形応答理論を用いた理論計算で示していた。平成18年度にフランスのグループ(Bhenia, et. al. ESPCI, Paris)から、ビスマス(Bi)単結晶のネルンスト係数およびエッチングスハウゼン係数の測定結果が発表され、ネルンスト係数の量子振動が現実の系で示された。我々はこの実験結果の検討を行い、試料の3次元性の効果を取り入れた理論拡張を行った。我々は磁場中の3次元バリスティック系を考え、運動の自由度を磁場に垂直な2次元面内の自由度と磁場に平行な自由度に分け、2次元面内の運動成分は有限サイズのバリスティックなものと見なしてネルンスト係数を考察した。その結果、3次元系でもネルンスト係数の量子的な振動が現れ、ネルンスト係数のピークは弱磁場側に尾を引く左右非対称の形を持つことが分かった。この形はBiの実験結果と一致する。このように、量子ネルンスト効果が3次元系において理論・実験両面から確認された。一方、Biのネルンスト係数のピークは実験値が理論値に比べ非常に大きい。この原因の理論的解明は今後の課題として残っている。我々は量子ホール系における輸送係数の基本関係に関しても考察を行った。従来、電気伝導度テンソルの非対角成分の磁場微分と対角成分との間では線形な関係式が提案され、研究が進められていた。我々は線形応答理論を用いて量子ホール系の輸送係数を理論・解析的に導出し、成分間の関係が非対角成分の磁場微分と対角成分の二乗が比例する非線形な関係であることを示した。この理論では、電子の不純物散乱により、ランダウ準位近傍の電子状態密度がローレンツ型になると仮定している。我々はGaAsによる実験結果を用いて、数テスラ程度の磁場のもとでこの関係が良く成立していることを確かめた。