著者
Deepchandi Lekamge Tomoki Sasahara Shin-ichi Yamamoto Masashi Hatamoto Takashi Yamaguchi Shinya Maki
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.4, pp.401-408, 2021-12-25 (Released:2021-12-25)
参考文献数
37
被引用文献数
2

Potato (Solanum tuberosum L.) is a major global food crop. Contemporary potato production largely utilizes micropropagation to produce healthy seed potatoes. The micropropagation of potatoes is widely achieved through nodal explants using the conventional Murashige and Skoog (MS) medium. Currently, effective culture media that can facilitate rapid propagation are increasingly required for new cultivars that have been developed to possess improved traits. In this study, we evaluated the effect of enhanced meso nutrients (CaCl2.2H2O, MgSO4, and KH2PO4) in MS medium on the growth of S. tuberosum. The cultivars used in this study were representative of Japanese, European, and Peruvian lines. Enhanced meso nutrients improved the overall quality of all cultivars, as indicated by longer shoots and larger leaves with dark color, compared with MS medium only. Shoots grown on enhanced mesos were approximately 1.5 times longer than on MS medium. Quantitative ion analysis revealed that plantlets with improved shoot length and leaf quality in most cultivars had increased calcium, magnesium, potassium, and phosphorus uptake than plantlets on MS medium. The results suggest that the reduced iron uptake on 3.0×MS, compared with 2.0× or 2.5×MS mesos, reduced plant growth. This study revealed for the first time that mesos concentrations higher than MS medium concentrations, complemented by enhanced calcium, magnesium, potassium, phosphorus, and iron uptake, play a significant role in improving the in vitro growth of potato.
著者
Eiji Takita Kazuya Yoshida Shigeru Hanano Atsuhiko Shinmyo Daisuke Shibata
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.4, pp.391-400, 2021-12-25 (Released:2021-12-25)
参考文献数
41

Genetic modification in plants helps us to understand molecular mechanisms underlying on plant fitness and to improve profitable crops. However, in transgenic plants, the value of gene expression often varies among plant populations of distinct lines and among generations of identical individuals. This variation is caused by several reasons, such as differences in the chromosome position, repeated sequences, and copy number of the inserted transgene. Developing a state-of-art technology to avoid the variation of gene expression levels including gene silencing has been awaited. Here, we developed a novel binary plasmid (pTACAtg1) that is based on a transformation-competent artificial chromosome (TAC) vector, harboring long genomic DNA fragments on both sides of the cloning sites. As a case study, we cloned the cauliflower mosaic virus 35S promoter:β-glucuronidase (35S:GUS) gene cassettes into the pTACAtg1, and introduced it with long flanking sequences on the pTACAtg1 into the plants. In isolated transgenic plants, the copy number was reduced and the GUS expressions were detected more stably than those in the control plants carrying the insert without flanking regions. In our result, the reduced copy number of a transgene suppressed variation and silencing of its gene expression. The pTACAtg1 vector will be suitable for the production of stable transformants and for expression analyses of a transgene.
著者
Ye Zhang Masaaki Umeda Tatsuo Kakimoto
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.1202a, (Released:2022-02-18)
参考文献数
61
被引用文献数
2

Pericycle cells possess proliferative activity long after leaving the root apical meristem. Depending on the developmental stage and external stimuli, pericycle cell division leads to the production of lateral roots, vascular cambium and periderm, and callus. Therefore, pericycle cell division competence underlies root branching and secondary growth, as well as plant regeneration capacity. In this review, we first briefly present an overview of the molecular pathways of the four developmental programs originated, exclusively or partly, from pericycle cells. Then, we provide a review of up-to-date knowledge in the mechanisms determining pericycle cells’ competence to undergo cell division. Furthermore, we discuss directions of future research to further our understanding of the pericycle’s characteristics and functions.
著者
Toshifumi Nagata Fabien Lombardo Hiroshi Ezura
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.387-390, 2021-09-25 (Released:2021-09-25)
参考文献数
14
被引用文献数
2

The HAWAIIAN SKIRT (HWS) gene was originally described in Arabidopsis for the characteristic fusion of sepals in the mutant. A tomato line mutated in the putative ortholog gene was isolated in a previous study. The tomato hws-1 mutant showed facultative parthenocarpy and produced fruits with elevated Brix, revealing the gene as a hopeful resource for crop improvement. To confirm the orthology relationship between the Arabidopsis and tomato HWS genes, the hws-1 mutant was complemented with either the tomato wild-type genomic fragment or the Arabidopsis sequence of the gene. In both complementation experiments, defective phenotypes of hws-1 are rescued, albeit to different extents. Recovery of these phenotypes, which include parthenocarpic fruit production, increased Brix, loss of leaflet serration, alteration of bud and petal shape, firmly establishes SlHWS as an ortholog of the originally described HWS in Arabidopsis. This work indicates that the function of HWS is likely to be conserved in a wide range of plant species.
著者
Ryo Maruyama Yasuyoshi Mayuzumi Jun Morisawa Shinya Kawai
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.379-386, 2021-09-25 (Released:2021-09-25)
参考文献数
34
被引用文献数
2

Lignocellulosic materials are potential renewable sources of fermentable sugars for bioethanol production. In this study, we used the CcAbf62A gene encoding CcAbf62A, a putative extracellular α-L-arabinofuranosidase, cloned from the mycotrophic basidiomycete Coprinopsis cinerea. CcAbf62A acts on arabinoxylan, the major hemicellulose of grasses, releasing arabinose. CcAbf62A was introduced into rice with the aim of enhancing delignification efficiency and the availability of lignocellulosic materials without reducing lignin content. Among the 32 lines of regenerated transgenic rice, 13 exhibited markedly disrupted elongation growth and excessive tillering (dwarf), seven showed delayed elongation growth (retarded-growth), and 12 showed phenotypes similar to those of control plants (normal). Additionally, the dwarf lines showed reduced acclimation. RT-PCR analysis revealed that dwarf lines had higher levels of CcAbf62A expression than retarded-growth and normal lines. Although the lignin content of transgenic rice plants expressing CcAbf62A did not differ significantly from that of control rice plants, dwarf lines were characterized by delayed deposition of lignin in the culms compared with the controls. The reduced acclimation ability of dwarf lines is believed to be associated with increased water loss and reduced water conductivity concomitant with delayed lignin deposition. Contrary to expectations, the alkaline delignification rates of dwarf and retarded-growth Abf lines were slightly lower than those of control rice plants. Our findings indicate that CcAbf62A reduces ferulate-lignin cross-links by detaching arabinose side chains from arabinoxylan and increases the relative abundance of alkaline-resistant benzyl ether cross-links. CcAbf62A is anticipated to provide new approaches for breeding plants containing altered lignocellulosic materials or lodging-resistant crops.
著者
Shuhei Tagami Kouhei Ohnishi Yasufumi Hikichi Akinori Kiba
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.373-378, 2021-09-25 (Released:2021-09-25)
参考文献数
33
被引用文献数
3

Phosphatidic acid plays an important role in Nicotiana benthamiana immune responses against phytopathogenic bacteria. We analyzed the contributions of endoplasmic reticulum-derived chloroplast phospholipids, including phosphatidic acid, to the resistance of N. benthamiana against Ralstonia solanacearum. Here, we focused on trigalactosyldiacylglycerol 3 (TGD3) protein as a candidate required for phosphatidic acid signaling. On the basis of Arabidopsis thaliana TGD3 sequences, we identified two putative TGD3 orthologs in the N. benthamiana genome, NbTGD3-1 and NbTGD3-2. To address the role of TGD3s in plant defense responses, we created double NbTGD3-silenced plants using virus-induced gene silencing. The NbTGD3-silenced plants showed a moderately reduced growth phenotype. Bacterial growth and the appearance of bacterial wilt disease were accelerated in NbTGD3-silenced plants, compared with control plants, challenged with R. solanacearum. The NbTGD3-silenced plants showed reduced both expression of allene oxide synthase that encoded jasmonic acid biosynthetic enzyme and NbPR-4, a marker gene for jasmonic acid signaling, after inoculation with R. solanacearum. Thus, NbTGD3-mediated endoplasmic reticulum—chloroplast lipid transport might be required for jasmonic acid signaling-mediated basal disease resistance in N. benthamiana.
著者
Kaho Miyazaki You Ohkubo Hiroto Yasui Ryoka Tashiro Rintaro Suzuki Hiroshi Teramura Hiroaki Kusano Hiroaki Shimada
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.367-371, 2021-09-25 (Released:2021-09-25)
参考文献数
25
被引用文献数
3

Late embryogenesis abundant protein (LEA) genes are widely conserved in seed plant species and form a multigene family. While some LEAs are known to respond to environmental stresses, the function of many LEAs is unknown. OsLEA5 (Lea14A) interacts with a regulator of the endosperm storage production, FLO2, suggesting that OsLEA5 may be involved in endosperm quality control. RNAi knockdown line of OsLEA5 showed decreased seed weight. Transformant lines overexpressing OsLEA5 exhibited improved quality and seed weight of mature seeds when they were developed under high-temperature conditions, while seed quality strongly declined in wild-type plants exposed to high-temperature stress. These findings indicate that OsLEA5 contributes to suppressing the deterioration of seed quality when developed under high-temperature conditions.
著者
Shinnosuke Mori Shuichi Shimma Hiromi Masuko-Suzuki Masao Watanabe Tetsu Nakanishi Junko Tsukioka Katsumi Goto Hiroshi Fukui Nobuhiro Hirai
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.355-366, 2021-09-25 (Released:2021-09-25)
参考文献数
65
被引用文献数
3

We observed trees of the Japanese apricot, Prunus mume ‘Nanko’ (Rosaceae), bearing two types of flowers: 34% had blue fluorescent pollen under UV irradiation, and 66% had non-fluorescent pollen. The fluorescent pollen grains were abnormally crushed, sterile, and devoid of intine and pollenkitt. The development of microspores within anthers was investigated: in the abnormally developed anthers, tapetal cells were vacuolated at the unicellular microspore stage, and fluorescent pollen was produced. Compounds responsible for the blue fluorescence of pollen were identified as chlorogenic acid and 1-O-feruloyl-β-D-glucose. The anthers with fluorescent pollen contained 6.7-fold higher and 3.8-fold lower amounts of chlorogenic acid and N1,N5,N10-tri-p-coumaroylspermidine, respectively, compared to those with non-fluorescent pollen. The tapetal vacuolization, highly accumulated chlorogenic acid, and deficiency of N1,N5,N10-tri-p-coumaroylspermidine imply that low-temperature stress during the early unicellular microspore stage caused a failure in microsporogenesis. Furthermore, potential effects of the visual difference on the bee behavior were also discussed through the colorimetry. The sterility, likely induced by low-temperature stress, and the preference of honeybees for fluorescence may reduce the pollination efficiency of P. mume.
著者
Ami Takeuchi Mariko Ohnuma Hiroshi Teramura Kenji Asano Takahiro Noda Hiroaki Kusano Koji Tamura Hiroaki Shimada
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.345-353, 2021-09-25 (Released:2021-09-25)
参考文献数
31
被引用文献数
16

The potato tuber starch trait is changed depending on the composition of amylose and amylopectin. The amount of amylopectin is determined by the activity of the starch branching enzymes SBE1, SBE2, and SBE3 in potato. SBE3, a homolog of rice BEI, is a major gene that is abundant in tubers. In this study, we created mutants of the potato SBE3 gene using CRISPR/Cas9 attached to the translation enhancer dMac3. Potato has a tetraploid genome, and a four-allele mutant of the SBE3 gene is desired. Mutations in the SBE3 gene were found in 89 of 126 transformants of potato plants. Among these mutants, 10 lines contained four mutant SBE3 genes, indicating that 8% efficiency of target mutagenesis was achieved. These mutants grew normally, similar to the wild-type plant, and yielded sufficient amounts of tubers. The potato starch in these tubers was similar to that of the rice BEI mutant. Western blot analysis revealed the defective production of SBE3 in the mutant tubers, suggesting that these transformants were loss-of-function mutants of SBE3.
著者
Kaori Sako Ryutaro Nagashima Masahiro Tamoi Motoaki Seki
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.339-344, 2021-09-25 (Released:2021-09-25)
参考文献数
30
被引用文献数
8

Abiotic stresses, such as high light and salinity, are major factors that limit crop productivity and sustainability worldwide. Chemical priming is a promising strategy for improving the abiotic stress tolerance of plants. Recently, we discovered that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying reactive oxygen species (ROS). However, the effect of ethanol on other abiotic stress responses is unclear. Therefore, we investigated the effect of ethanol on the high-light stress response. Measurement of chlorophyll fluorescence showed that ethanol mitigates photoinhibition under high-light stress. Staining with 3,3′-diaminobenzidine (DAB) showed that the accumulation of hydrogen peroxide (H2O2) was inhibited by ethanol under high-light stress conditions in A. thaliana. We found that ethanol increased the gene expressions and enzymatic activities of antioxidative enzymes, including ASCORBATE PEROXIDASE1 (AtAPX1), Catalase (AtCAT1 and AtCAT2). Moreover, the expression of flavonoid biosynthetic genes and anthocyanin contents were upregulated by ethanol treatment during exposure to high-light stress. These results imply that ethanol alleviates oxidative damage from high-light stress in A. thaliana by suppressing ROS accumulation. Our findings support the hypothesis that ethanol improves tolerance to multiple stresses in field-grown crops.
著者
Eri Tomizawa Shogo Ohtomo Kanako Asai Yuka Ohta Yukako Takiue Akihiro Hasumi Masahiro Nishihara Takashi Nakatsuka
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.323-330, 2021-09-25 (Released:2021-09-25)
参考文献数
31
被引用文献数
6

Betalains, comprising violet betacyanins and yellow betaxanthins, are pigments found in plants belonging to the order Caryophyllales. In this study, we induced the accumulation of betalains in ornamental lisianthus (Eustoma grandiflorum) by genetic engineering. Three betalain biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in lisianthus, in which anthocyanin pigments are responsible for the pink flower color. During the selection process on hygromycin-containing media, some shoots with red leaves were obtained. However, most red-colored shoots were suppressed root induction and incapable of further growth. Only clone #1 successfully acclimatized and bloomed, producing pinkish-red flowers, with a slightly greater intensity of red color than that in wild-type flowers. T1 plants derived from clone #1 segregated into five typical flower color phenotypes: wine red, bright pink, pale pink, pale yellow, and salmon pink. Among these, line #1-1 showed high expression levels of all three transgenes and exhibited a novel wine-red flower color. In the flower petals of line #1-1, abundant betacyanins and low-level betaxanthins were coexistent with anthocyanins. In other lines, differences in the relative accumulation of betalain and anthocyanin pigments resulted in flower color variations, as described above. Thus, this study is the first to successfully produce novel flower color varieties in ornamental plants by controlling betalain accumulation through genetic engineering.
著者
Shohei Nosaki Ken Hoshikawa Hiroshi Ezura Kenji Miura
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.297-304, 2021-09-25 (Released:2021-09-25)
参考文献数
60
被引用文献数
31

The production of recombinant proteins is important in academic research to identify protein functions. Moreover, recombinant enzymes are used in the food and chemical industries, and high-quality proteins are required for diagnostic, therapeutic, and pharmaceutical applications. Though many recombinant proteins are produced by microbial or mammalian cell-based expression systems, plants have been promoted as alternative, cost-effective, scalable, safe, and sustainable expression systems. The development and improvement of transient expression systems have significantly reduced the period of protein production and increased the yield of recombinant proteins in plants. In this review, we consider the importance of plant-based expression systems for recombinant protein production and as genetic engineering tools.
著者
Kinya Toriyama
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.285-295, 2021-09-25 (Released:2021-09-25)
参考文献数
79
被引用文献数
20

Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.
著者
Emi Yumoto Naohisa Yanagihara Masashi Asahina
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.1126a, (Released:2022-01-15)
参考文献数
18
被引用文献数
1

L-3,4-dihydroxyphenylalanine (L-DOPA) is one of the important secondary metabolites of plants and has been used for various purposes, such as in clinical treatment for Parkinson’s disease and dopamine-responsive dystonia. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin; the L-DOPA synthesis pathway is similar to that in mammals. L-DOPA acts as an allelochemical, has an important role in several biological processes, such as stress response and metabolism, in plants. L-DOPA is widely used in the clinical treatment as well as a dietary supplement or psychotropic drug, understanding of biosynthesis of L-DOPA in plant could lead to a stable supply of L-DOPA. This paper describes an improved method for simple and rapid quantification of L-DOPA content using liquid chromatography-tandem mass spectrometry. The standard quantitative methods for L-DOPA require multiple purification steps or relatively large amounts of plant material. In our improved method, quantification of L-DOPA was possible with extract of one–two pieces of cotyledon without any partitioning or column for purification. The endogenous L-DOPA (approximately 4,000 µg g−1 FW (fresh weight)) could be detected from the one pieces of cotyledon of the faba bean sprout using this method. This method was also effective for samples with low endogenous amounts of L-DOPA such as broccoli, Japanese white radish, pea, and red cabbage sprouts. Therefore, this improved method will allow to measurement of L-DOPA content easily and accurately from a small amount of plant tissue and contribute to understanding biosynthesis, catabolism, and transport of L-DOPA.
著者
Hitomi Takahashi Yutaka Kodama
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.0902a, (Released:2021-12-14)
参考文献数
7
被引用文献数
1

Ongoing research has generated many important lines of the model liverwort Marchantia polymorpha, including mutants and transgenic lines. To maintain these lines, researchers typically spend a lot of time and effort periodically replanting thalli (e.g., every month). To avoid this routine maintenance, researchers have developed methods for cryopreservation of dried and frozen gemmae. In this study, we developed a culture-based method for preserving gemmalings and thalli without encapsulation, drying, or freezing. The method requires only tissue culture on agar medium supplemented with sucrose in the dark at regular temperature (22°C). These culture conditions severely inhibit growth of gemmalings and thalli; however, these tissues remained alive after more than 1 year of storage. Survival rate of tissues using this method was 100% in all tests. This method thus enables preservation of gemmaling and thallus cultures on medium under regular temperature conditions, thereby relieving researchers of labor-intensive routine maintenance.
著者
Eiji Takita Kazuya Yoshida Shigeru Hanano Atsuhiko Shinmyo Daisuke Shibata
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.0823a, (Released:2021-10-26)
参考文献数
41

Genetic modification in plants helps us to understand molecular mechanisms underlying on plant fitness and to improve profitable crops. However, in transgenic plants, the value of gene expression often varies among plant populations of distinct lines and among generations of identical individuals. This variation is caused by several reasons, such as differences in the chromosome position, repeated sequences, and copy number of the inserted transgene. Developing a state-of-art technology to avoid the variation of gene expression levels including gene silencing has been awaited. Here, we developed a novel binary plasmid (pTACAtg1) that is based on a transformation-competent artificial chromosome (TAC) vector, harboring long genomic DNA fragments on both sides of the cloning sites. As a case study, we cloned the cauliflower mosaic virus 35S promoter:β-glucuronidase (35S:GUS) gene cassettes into the pTACAtg1, and introduced it with long flanking sequences on the pTACAtg1 into the plants. In isolated transgenic plants, the copy number was reduced and the GUS expressions were detected more stably than those in the control plants carrying the insert without flanking regions. In our result, the reduced copy number of a transgene suppressed variation and silencing of its gene expression. The pTACAtg1 vector will be suitable for the production of stable transformants and for expression analyses of a transgene.
著者
Kalimullah Saighani Daiki Kondo Naoto Sano Kazumasa Murata Tetsuya Yamada Motoki Kanekatsu
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.2, pp.277-283, 2021-06-25 (Released:2021-06-25)
参考文献数
34
被引用文献数
8

The mature embryos of rice seeds contain translatable mRNAs required for the initial phase of germination. To clarify the relationship between seed longevity and RNA integrity in embryos, germinability and stability of embryonic RNAs were analyzed using the seeds of japonica rice cultivars subjected to controlled deterioration treatment (CDT) or long periods of storage. Degradation of RNA from embryos of a japonica rice cultivar “Nipponbare” was induced by CDT before the decline of the germination rate and we observed a positive relationship between seed germinability and integrity of embryonic RNAs. Moreover, this relationship was confirmed in the experiments using aged seeds from the “Nipponbare”, “Sasanishiki” and “Koshihikari” rice cultivars. In addition, the RNA integrity number (RIN) values, calculated using electrophoresis data and Agilent Bioanalyzer software, had a positive correlation with germinability (R2=0.75). Therefore, the stability of embryonic RNAs required for germination is involved in maintaining seed longevity over time and RIN values can serve as a quantitative indicator to evaluate germinability in rice.
著者
Hirotomo Takatsuka Yuji Nomoto Satoshi Araki Yasunori Machida Masaki Ito
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.2, pp.269-275, 2021-06-25 (Released:2021-06-25)
参考文献数
21
被引用文献数
4

MYB3R family transcription factors play a central role in the regulation of G2/M-specific gene transcription in Arabidopsis thaliana. Among the members of this family, MYB3R3 and MYB3R5 are structurally closely related and are involved in the transcriptional repression of target genes in both proliferating and quiescent cells. This type of MYB3R repressor is widespread in plants; however, apart from the studies on MYB3Rs in Arabidopsis thaliana, little information about them is available. Here we isolated tobacco cDNA clones encoding two closely related MYB3R proteins designated as NtmybC1 and NtmybC2 and determined the nucleotide sequences of the entire coding regions. Phylogenetic analysis suggested that NtmybC1 and NtmybC2 can be grouped into a conserved subfamily of plant MYB3Rs that also contains MYB3R3 and MYB3R5. When transiently expressed in protoplasts prepared from tobacco BY-2 cells, NtmybC1 and NtmybC2 repressed the activity of target promoters and blocked promoter activation mediated by NtmybA2, a MYB3R activator from tobacco. Unlike MYB3R3 and MYB3R5, NtmybC1 and NtmybC2 showed cell cycle-regulated transcript accumulation. In synchronized cultures of BY-2 cells, mRNAs for both NtmybC1 and NtmybC2 were preferentially expressed during the G2 and M phases, coinciding with the expression of NtmybA2 and G2/M-specific target genes. These results not only broadly confirm our fundamental view that this type of MYB3R protein acts as transcriptional repressor of G2/M-specific genes but also suggest a possible divergence of MYB3R repressors in terms of the mechanisms of their action and regulation.
著者
Kazusato Oikawa Takuto Imai Yutaka Kodama Keiji Numata
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.2, pp.257-262, 2021-06-25 (Released:2021-06-25)
参考文献数
15
被引用文献数
2

Mitochondria-selective fluorescent probes such as MitoTracker are often used for mitochondria imaging in various plants. Although some of the probes are reported to induce mitochondria dysfunction in animal cells, the effect on plant cells remains to be determined. In the present study, we applied quantitative methods to analyze mitochondrial movement, speed frequency, and speed-angle changes, based on trajectory analysis of mitochondria in mesophyll protoplast cells of Arabidopsis thaliana expressing the mitochondria-localized fluorescent protein. Using the quantitative method, we assessed whether MitoTracker Red (FM and CMXRos) induce mitochondria dysfunction in A. thaliana. Although both the fluorescent probes well-stained mitochondria, the CMXRos probe, not the FM probe, gave a severe effect on mitochondrial movement at the low concentration (10 nM), indicating a MitoTracker-induced mitochondria dysfunction in A. thaliana. These results revealed that our quantitative method based on mitochondrial movement can be used to determine the appropriate concentrations of mitochondria-selective fluorescent probes in plants.
著者
Wiluk Chacuttayapong Harumi Enoki Yusei Nabetani Minami Matsui Taichi Oguchi Reiko Motohashi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.2, pp.247-256, 2021-06-25 (Released:2021-06-25)
参考文献数
58
被引用文献数
3

The development of green energy is important to mitigate global warming. Jatropha (Jatropha curcas L.) is a promising candidate for the production of alternative biofuel, which could reduce the burden on the Earth’s resources. Jatropha seeds contain a large quantity of lipids that can be used to produce biofuel, and the rest of the plant has many other uses. Currently, techniques for plant genetic transformation are extensively employed to study, create, and improve the specific characteristics of the target plant. Successful transformation involves the alteration of plants and their genetic materials. The aim of this study was to generate Jatropha plants that can support biofuel production by increasing their seed size using genes found via the rice FOX-hunting system. The present study improved previous protocols, enabling the production of transgenic Jatropha in two steps: the first step involved using auxins and dark incubation to promote root formation in excised shoots and the second step involved delaying the timing of antibiotic selection in the cultivation medium. Transgenic plants were subjected to PCR analysis; the transferred gene expression was confirmed via RT-PCR and the ploidy level was investigated. The results suggest that the genes associated with larger seed size in Arabidopsis thaliana, which were found using the rice FOX-hunting system, produce larger seeds in Jatropha.