著者
森 重文 藤野 修
出版者
一般社団法人 日本数学会
雑誌
数学 (ISSN:0039470X)
巻号頁・発行日
vol.69, no.3, pp.294-319, 2017-07-25 (Released:2019-07-26)
参考文献数
32
著者
宮崎 美津代 増田 健二郎 佐藤 幸一 藤野 修 長田 淳一 岡 耕一 川井 尚臣 三ツ井 貴夫
出版者
一般社団法人 日本内科学会
雑誌
日本内科学会雑誌 (ISSN:00215384)
巻号頁・発行日
vol.84, no.4, pp.624-626, 1995-04-10 (Released:2008-06-12)
参考文献数
7

症例は55歳,男性.中腰で天井の内装を1日中続けた後,腰部から大腿部に強い筋痛が出現した.尿は暗褐色に着色し,血清CK活性値が46000IU/l,血清Mb値が32000ng/mlと高値を示したため,着色尿は横紋筋融解によるミオグロビン尿と考えられた.腎障害はなく,発症後1週間で改善した.本例の筋障害は長時間の同一肢位保持による筋の等尺性負荷によると考えられ,静的な運動負荷でも横紋筋融解をきたす強い筋障害をおこすことがある.
著者
向井 茂 中山 昇 橋本 光靖 金銅 誠之 齋藤 政彦 藤野 修 行者 明彦 浪川 幸彦 梅村 浩 寺西 鎮男 齊藤 博
出版者
京都大学
雑誌
基盤研究(A)
巻号頁・発行日
1998

1)幾何学的不変式論を再構成した。また、曲線状のベクトル束のモジュライ空間をQuotスキームというものを使わずに構成した。両者相まってベクトル束のモジュライ理論は大幅に簡易化され見通しよくなった。多くの発展がこの基礎付けのもとになされると期待する。(例えば、Jacobi多様体の退化)2)放物や安定対のような構造付きベクトル束のモジュライも上と同じように構成が見通しよくなった。おかげで共形ブロックの個数に関するVerlinde公式を不変式環のHilbert級数の明示と捉えることができるようになった。この公式の周辺に集まる多くの数学(アフィンLie環、Hecke環や量子群など)を不変式の観点から純代数的に理解できるようになると期待している。。3)穴あきRiemann球(=点付き射影直線)上の構造付きベクトル束のモジュライのmaster spaceは2次元加法群の多項式環への平方零作用の不変式環をその座標環としてもつ。このことより、この環の有限生成性が従う。これと下の成果を合わせて加法群の平方零作用に対するHilbertの第14問題を解決した。(2002年3月学会で報告)4)永田の反例を改良することによって3次元加法群の18変数多項式環への平方零作用の不変式環で無限生成なものを構成した。この環と、5次元射影空間を9点で爆発したものの全座標環との間の同型(永田トリック)が重要であるが、これの新証明も与えた。5)二つのK3曲面の直積上のある種のHodgeサイクルの代数性(Shafarevich予想)に対して新しい証明を見つけた。6)偏極Abel曲面に対して2重レヴェルを考案し、それ付きのモジュライを研究した。(1,d)型でdが5以下のときは正多面体群を使って綺麗な多様体になる。今後は次元公式を計算し、保型形式環を研究すべきと考えている。
著者
齋藤 政彦 山田 泰彦 太田 泰広 望月 拓郎 吉岡 康太 野海 正俊 野呂 正行 小池 達也 稲場 道明 森 重文 向井 茂 岩崎 克則 金子 昌信 原岡 喜重 並河 良典 石井 亮 藤野 修 細野 忍 松下 大介 阿部 健 入谷 寛 戸田 幸伸 中島 啓 中村 郁 谷口 隆 小野 薫 ラスマン ウェイン 三井 健太郎 佐野 太郎
出版者
神戸大学
雑誌
基盤研究(S)
巻号頁・発行日
2012-05-31

不分岐な不確定特異点を持つ接続のモジュライ空間の構成,リーマン・ヒルベルト対応の研究により,対応するモノドロミー保存変形の幾何学を確立した.また,混合ツイスターD加群の理論の整備,可積分系の幾何学的研究において種々の成果を得た.高次元代数幾何学においては,端末的3次元射影多様体のある種の端収縮射の分類や, コンパクトケーラー多様体の標準環の有限生成性などの基本的結果のほか,モジュライ理論,シンプレクテック多様体に関する種々の成果を得た.量子コホモロジーの数学的定式化や,ミラー対称性の数学的理解についても大きな成果を得た.また,代数多様体の層の導来圏に関する研究においても種々の成果を得た.
著者
松下 大介 藤野 修 川北 真之 高木 寛道
出版者
北海道大学
雑誌
挑戦的萌芽研究
巻号頁・発行日
2011

穴あき円盤の上の滑らかなアーベル多様体の族, あるいは底空間を高次元化した多重円盤から座標軸にあたる超平面を除いたものの上の滑らかなアーベル多様体の族を底空間の穴あるいは除いた超平面の上まで延長した族を構成することに成功した. この問題は1980年代には考察されていた問題ではあったが, 満足出来る証明がこれまで与えられてこなかったため, 関連する問題に不自然な技術的な仮定を付けざるをえないものが多くあり, この成果を利用することで, 関連するいくつかの結果を改良することが見込まる.
著者
吉田 健一 橋本 光靖 伊山 修 藤野 修 寺井 直樹 寺井 直樹
出版者
名古屋大学
雑誌
基盤研究(B)
巻号頁・発行日
2007

研究代表者は、以前の研究で原伸生氏と共に、一般化された密着閉包の概念を導入し、乗数イデアルを可換環論の言葉で定義することに成功した。具体的には、乗数イデアルは、密着閉包のテストイデアルの標数に関する極限として得られる。本研究では、小さな標数のテストイデアルの振る舞いと乗数イデアルの振る舞いとの違いを明らかにした。さらに、可換環論におけるさまざまな不変量の研究を行うために、密着閉包の理論を整備した。