著者
阿江 数通 小池 関也 藤井 範久 阿江 通良 川村 卓 金堀 哲也
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
vol.62, no.2, pp.559-574, 2017 (Released:2017-12-19)
参考文献数
46

The purpose of this study was to compare the kinematic characteristics of the upper body between baseball tee batting and pitched ball batting in order to gain basic knowledge for improvement of batting skill. Ten male collegiate baseball players (age: 20.7±1.1 yr; height: 1.75±0.05 m; body mass: 76.3±7.1 kg; athletic career: 12.7±2.7 yr) participated. They performed 2 kinds of batting: tee batting (TB) and machine-pitch batting (MB) using a pitching machine (approximate ball speed 33.3 m/s), which were set at middle ball height for the strike zone. Three-dimensional coordinate data were acquired with a motion capture system. Kinematic variables such as maximum bat-head speed, swing time, bat angle, joint angles of the upper limbs, and segment angle of the upper trunk were calculated. Differences between TB and MB were analyzed statistically using paired t-test (p<0.05). The maximum bat-head speed was significantly greater in TB than in MB, but swing times divided into 2 phases showed no significant differences between MB and TB. In the first half of the swing, the bat inclination angle was significantly larger in MB than in TB. The joint angles of the barrel-side shoulder abduction, knob-side shoulder adduction and internal rotation were significantly larger in MB than in TB, and those of the barrel-side shoulder internal rotation and individual elbow pronations were significantly larger in TB than in MB. The clockwise rotational angle of the upper trunk was significantly larger in TB than in MB. In the last half of the swing, the joint angles of the barrel-side shoulder abduction, knob-side shoulder flexion and adduction were significantly larger in MB than in TB, and that of the knob-side elbow pronation was significantly larger in TB than in MB. The changes in upper body movement in MB affected the radius of rotation of the bat about the vertical axis to control the bat easily. The movements in the last half of the swing largely resulted from those in the first half of the swing, and did not contribute to timing adjustment. These results indicate that the initial configuration of the bat and upper limbs, and movements at the beginning of the bat swing contribute to the timing adjustment of the bat for a pitched ball. The results of the present study suggest that it could be useful to pay attention to the movement of the bat and upper body in the first half of the swing as TB practice in order to improve timing adjustment.
著者
阿江 数通 小池 関也 藤井 範久 阿江 通良 川村 卓 金堀 哲也
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
pp.16080, (Released:2017-09-01)
参考文献数
48

The purpose of this study was to compare the kinematic characteristics of the upper body between baseball tee batting and pitched ball batting in order to gain basic knowledge for improvement of batting skill. Ten male collegiate baseball players (age: 20.7±1.1 yr; height: 1.75±0.05 m; body mass: 76.3±7.1 kg; athletic career: 12.7±2.7 yr) participated. They performed two kinds of batting: tee batting (TB) and machine-pitch batting (MB) using a pitching machine (approximate ball speed 33.3 m/s), which were set at middle ball height for the strike zone. Three-dimensional coordinate data were acquired with a motion capture system. Kinematic variables such as maximum bat-head speed, swing time, bat angle, joint angles of the upper limbs, and segment angle of the upper trunk were calculated. Differences between TB and MB were analyzed statistically using paired t-test (p<0.05.) The maximum bat-head speed was significantly greater in TB than in MB, but swing times divided into two phases showed no significant differences between MB and TB. In the first half of the swing, the bat inclination angle was significantly larger in MB than in TB. The joint angles of the barrel-side shoulder abduction, knob-side shoulder adduction and internal rotation were significantly larger in MB than in TB, and those of the barrel-side shoulder internal rotation and individual elbow pronations were significantly larger in TB than in MB. The clockwise rotational angle of the upper trunk was significantly larger in TB than in MB. In the last half of the swing, the joint angles of the barrel-side shoulder abduction, knob-side shoulder flexion and adduction were significantly larger in MB than in TB, and that of the knob-side elbow pronation was significantly larger in TB than in MB. The changes in upper body movement in MB affected the radius of rotation of the bat about the vertical axis to control the bat easily. The movements in the last half of the swing largely resulted from those in the first half of the swing, and did not contribute to timing adjustment. These results indicate that the initial configuration of the bat and upper limbs, and movements at the beginning of the bat swing contribute to the timing adjustment of the bat for a pitched ball. The results of the present study suggest that it could be useful to pay attention to the movement of the bat and upper body in the first half of the swing as TB practice in order to improve timing adjustment.
著者
川村 卓 小池 関也 阿江 数通
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
vol.64, no.1, pp.37-48, 2019-06-17 (Released:2019-06-25)
参考文献数
22

This study examined the flow of energy in the right and left upper limbs of skilled baseball batters during the forward swing motion at different bat head speeds to obtain basic insights that would be useful for batting coaching. The subjects were 23 college baseball outfielders in university teams. The subjects were instructed to hit a ball toward the pitcher from a tee set at a mid-height position. Measurements were taken using 47 points on each subject’s body and 6 points on the bat for a total of 53 points, onto which reflective markers were attached. The 3D coordinates of each marker were measured using a 3D optical motion capture device (Vicon Motion Systems’ VICONMX, 12 cameras, 250 Hz). The variables in the kinetics of each hand were measured using a force detection sensor bat (1000 Hz). The subjects were separated into a faster group of 36.8±0.8 m/s and a slower group of 34.7±1.1 m/s for analysis. In terms of energy transmission, the data revealed that the faster group, in addition to showing additional torque on the knob side shoulder joints, were able to transmit more mechanical energy from the knob side shoulder joints to the end of the upper limbs than the slower group, and that this might be related to an efficient bat head speed. In addition, the faster group showed an increased positive torque power, and transmitted greater mechanical energy to the bat from the hand region. In other words, to prevent mechanical energy from being absorbed while adjusting the bat trajectory near the time of impact, skilled bat control involving movement of the hand joints appeared to determine the bat head speed.
著者
阿江 数通 小池 関也 川村 卓 中島 亮一
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
vol.64, no.1, pp.135-149, 2019-06-17 (Released:2019-06-25)
参考文献数
40

The purpose of this study was to investigate the kinematic characteristics of the lower limbs in relation to the rotation movement of the body based on the moment of the ground reaction force. Twenty-two male collegiate baseball players (age: 19.8 ± 1.3 yr, height 1.75 ± 0.04 m, body mass 73.9 ± 6.2 kg, athletic career:12.1 ± 2.1 yr) participated. They performed baseball tee-batting, set at middle ball height for the strike zone. Threedimensional coordinate data were acquired with a motion capture system (Vicon-MX), and ground reaction force data for both legs were acquired with 3 force platforms. High and low groups (HG and LG) were categorized by the mean peak moment around the vertical axis of the body’s center of gravity caused by the ground reaction force. The period analyzed was that from stride-side foot contact with ground until ball impact, and 2 phases were defined as follows: backward phase, stride-side foot contact with ground until the peak moment of the ground reaction force; forward phase, the end of the backward phase until ball impact. Statistical analysis was conducted using an independent t-test between HG and LG (p <0.05), and the effect size was calculated (small: d = 0.2; middle: d = 0.5; high: d = 0.8). In the backward phase, the flexion angle of both hips was greater in the HG than in the LG at event1 (pivot-side: d = 0.74; stride-side: d =0.97). The abduction angle of the pivot-side hip was significantly greater in the HG than in the LG (stride-side foot contact with ground: d = 0.94; peak moment of the ground reaction force: d = 1.44). In the forward phase, the external rotation angle of the pivot-side hip was significantly greater in the HG than in the LG (d = 1.02), which contributed to the inter-group difference in the internal rotation angle at the instant of stride-side foot contact. These results indicate that the motions of both hip joints acted to rotate the whole body around the vertical axis effectively. The knowledge obtained from this study should provide useful suggestions and insights into coaching for movements of the lower limbs in order to improve batting performance in relation to the rotational movement of the body.
著者
川村 卓 小池 関也 阿江 数通
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
pp.17038, (Released:2019-02-05)
参考文献数
22

This study examined the flow of energy in the right and left upper limbs of skilled baseball batters during the forward swing motion at different bat head speeds to obtain basic insights that would be useful for batting coaching. The subjects were 23 college baseball outfielders in university teams. The subjects were instructed to hit a ball toward the pitcher from a tee set at a mid-height position. Measurements were taken using 47 points on each subject’s body and 6 points on the bat for a total of 53 points, onto which reflective markers were attached. The 3D coordinates of each marker were measured using a 3D optical motion capture device (Vicon Motion Systems’ VICONMX, 12 cameras, 250 Hz). The variables in the kinetics of each hand were measured using a force detection sensor bat (1000 Hz). The subjects were separated into a faster group of 36.8±0.8 m/s and a slower group of 34.7±1.1 m/s for analysis. In terms of energy transmission, the data revealed that the faster group, in addition to showing additional torque on the knob side shoulder joints, were able to transmit more mechanical energy from the knob side shoulder joints to the end of the upper limbs than the slower group, and that this might be related to an efficient bat head speed. In addition, the faster group showed an increased positive torque power, and transmitted greater mechanical energy to the bat from the hand region. In other words, to prevent mechanical energy from being absorbed while adjusting the bat trajectory near the time of impact, skilled bat control involving movement of the hand joints appeared to determine the bat head speed.
著者
阿江 数通 小池 関也 川村 卓
出版者
一般社団法人 日本体育学会
雑誌
体育学研究 (ISSN:04846710)
巻号頁・発行日
vol.59, no.2, pp.431-452, 2014 (Released:2014-12-20)
参考文献数
43
被引用文献数
2 2

The purpose of this study was to clarify the kinetic features of the upper limbs at different hitting-point heights (high, middle, and low) during baseball tee-batting. Twenty-three collegiate male baseball players (age: 19.8±1.3 yr, height: 1.74±0.04 m, weight: 74.1±6.2 kg, athletic career: 12.0±2.1 yr) participated. Three-dimensional coordinate data were captured using a VICON-MX system (12-camera, 250 Hz), and kinetic data for each hand were collected using an instrumented bat equipped with 28 strain gauges (1000 Hz). Three tee-batting heights were set for each subject based on the upper and lower limits of the strike zone according to the rules of baseball. Kinetic variables for the upper limbs, such as joint torque, joint torque power, and mechanical work, were calculated. The period of forward swing motion was divided into down-swing and level-swing phases. The results are summarized as follows: 1) The extension torque and positive torque power at each individual shoulder joint were significantly greater at the low hitting-point height than at other heights. 2) The positive torque power for extension torque at each individual elbow joint in the last half of the down-swing phase was significantly greater at the low hitting-point height than at other heights. 3) Negative power for adduction/abduction torque at each individual shoulder joint in the level-swing phase was observed at the low hitting-point height. 4) The mechanical work done by joint torque about the flexion/extension and adduction/abduction axes at the shoulder, the flexion/extension axis at the elbow, and the palmar/dorsal flexion and radial/ulnar flexion axes at the wrist showed large and positive values, and differed significantly among hitting-point heights. These results indicate that 1) the flexion/extension torque at each individual shoulder joint contributes greatly to adjustment of the translational movement of the bat in the vertical direction during the down-swing phase, 2) the adduction/abduction torque at each individual shoulder joint exerts a larger proportion of the longitudinal force of the bat to withstand centrifugal force at a low hitting-point height than at other heights in the level swing phase, and 3) consequently, it tends to be more difficult to adjust the bat to the hitting-point at a low height in comparison with other heights.