- 著者
-
高安 亮紀
- 出版者
- 早稲田大学
- 雑誌
- 特別研究員奨励費
- 巻号頁・発行日
- 2011
線形化微分作用素に対する逆作用素のノルム評価法:線形化微分作用素の可逆性の証明は偏微分方程式の精度保証付き数値計算において重要な役割を占めている.本研究では自己共役な線形化作用素に対して,楕円型作用素の実固有値を用いて可逆性が検証できる事を示した.そしてLaplacianに対する精度保証付き固有値評価をもとにした固有値評価を導出し,計算された固有値を利用するノルム評価方法を確立した.提案手法は先行研究に比べ検証が成功しやすく,よりタイトな評価を可能にする事が特徴である.さらに,これまでの任意多角形領域上における計算機援用証明法の技巧を用いることで,任意多角形領域に対応することができ,より実用的な逆作用素のノルム評価方法を提案することができた.提案手法の反応拡散系数理モデルへの適応:任意多角形領域上における計算機援用証明方法の応用例として,2つの未知関数(u,v)に関する反応拡散系の非線形連立偏微分方程式を考える.反応拡散方程式は主に化学,生物学,物理学などに表れる現象を記述した方程式である.本研究ではFitzHugh-Nagumo方程式と呼ばれる神経繊維上の電位の伝播モデルを考え,反応拡散方程式の定常解を任意多角形領域上で計算機援用解析できるようにした.これは昨年度提案したHyper-circle equationとNewton-Kantorovichの定理を基礎とする精度保証付き数値計算手法の自然な拡張である.適応にあたり,先行研究では成されていなかった作用素項が含まれる固有値問題に対する精度保証付き評価を提案するなど,既存の理論の応用だけではない新たな手法の発展が適用を可能にした.