著者
Yuta Goto Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.18A-003, (Released:2022-03-24)
被引用文献数
3

We statistically investigate characteristics of “senjo-kousuitai”, quasi-stationary linear precipitation systems, in East Asia using high-resolution satellite precipitation and reanalysis data to understand whether these events are common there. We define an elongated precipitation system in the satellite precipitation data as a senjo-kousuitai event.Our results show that the contribution of senjo-kousuitai to heavy rainfall is high in western Japan, especially in Kyushu, the Nansei Islands, and the East China Sea. Among the environmental factors favorable for the occurrence of senjo-kousuitai, low-level water vapor flux and vertical wind shear are essential to the development of senjo-kousuitai. As a typical case, we examine large-scale circulations associated with senjo-kousuitai events in Kyushu in the Baiu season (June to July), and found that they are generally characterized by the intensified Pacific High over the south of Kyushu and pressure trough to the north of Kyushu. This circulation pattern results in a stronger pressure gradient and higher low-level wind speeds over Kyushu. With respect to the previously noted importance of water vapor and wind speed for better prediction of senjo-kousuitai, we show that not water vapor but higher wind speeds are the main factor for the enhancement of low-level water vapor flux.
著者
Hiroyuki Yamada Tomoe Nasuno Wataru Yanase Masaki Satoh
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.203-208, 2016 (Released:2016-08-03)
参考文献数
26
被引用文献数
1 17

Typhoon Fengshen (2008) was marked by a persistent track toward the northwest, which was poorly predicted by an operational hydrostatic model, which indicated a significant northward bias. Using a global nonhydrostatic model with finer grid spacing, we have simulated a reliable track of this typhoon. The purpose of this study is to clarify the causes of the northward bias by comparing the output of the two models. This typhoon was marked by the asymmetry of rainfall concentrating in the downshear side. While both models could reproduce the asymmetric structure, a significant difference between them was found in the vertical structure. In the hydrostatic model, the vortex tilted to the downshear side with a displacement from lower to upper levels exceeding 100 km. This tilt was related to weak updrafts of, at most, 0.5 m s−1. Diagnosis using vorticity budget demonstrated that the tilt of the vortex resulted from a lack of vertical coupling that was too weak to withstand differential advection between the lower and upper levels. These results suggest the importance of reproducing inner-core updrafts for better track prediction of a typhoon in an environment with strong vertical shear.
著者
Shuhei Matsugishi Hiroaki Miura Tomoe Nasuno Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16A, no.Special_Edition, pp.12-18, 2020 (Released:2020-06-27)
参考文献数
38
被引用文献数
6

We show that a modification to the latent heat flux (LHF) formulation in Non-hydrostatic Icosahedral Atmospheric Model (NICAM) impacts the representation of a Madden–Julian oscillation (MJO) event during the Pre-Years of the Maritime Continent (Pre-YMC) field campaign in 2015. First, we compare the LHFs computed by the standard NICAM setting with those estimated from the ship observation during Pre-YMC. In this comparison, the NICAM LHF is smaller than observation in the low wind speed region and larger in the high wind speed region. Consequently, the MJO signal weakens when it passes over the Maritime Continent (MC). Next, sensitivity experiments are conducted with a modification to the threshold minimum wind speed in the bulk formula, to enhance the LHFs in the low wind speed region. With this modification, propagation of the MJO is better simulated over the MC, although a bias still remains without corrections in the high wind speed regions. This result indicates that increasing the LHF in the low wind speed region likely contributes to a more effective accumulation of moisture over the eastern MC region and consequently allows the MJO to pass over the MC in the model.
著者
Masato Sugi Yohei Yamada Kohei Yoshida Ryo Mizuta Masuo Nakano Chihiro Kodama Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.70-74, 2020 (Released:2020-05-01)
参考文献数
22
被引用文献数
30

In relation to projections of tropical cyclone (TC) frequency in a future warmer climate, there is a debate on whether the global frequency of TC seeds (weak pre-storm vortices) will increase or not. We examined changes in the frequency of TC seeds by occurrence frequency analysis (OFA) of vortex intensity (vorticity or maximum wind speed). We directly counted the number of vortices with various intensities in high resolution global atmospheric model simulations for present and future climates. By using the OFA we showed a clear reduction of the occurrence frequency of TC seeds and relatively weak (category 2 or weaker) TCs in a future warmer climate, with an increase in the frequency of the most intense (category 5) TCs. The results suggest that the OFA is a useful method to estimate the future changes in TC frequency distribution ranging from TC seeds to the most intense TCs.
著者
Masaki Satoh Keisuke Hosotani
出版者
公益社団法人 日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.19A, no.Special_Edition, pp.1-8, 2023 (Released:2023-02-10)
参考文献数
19
被引用文献数
1

A sequence of heavy rainfall events due to quasi-stationary band-shaped precipitation systems, or “senjo-kousuitai“, was observed in the Kyushu region, Japan, from 3 to 8 July 2020. In this study, we investigate two of six indices that have previously been used to determine conditions favorable for senjo-kousuitai, i.e., water vapor flux at the height of 500 m and storm-relative environmental helicity. We examine the relationship between these indices and the occurrence of senjo-kousuitai over the past 20 years using the Japan Meteorological Agency 55-year reanalysis data. We show that the anomaly in wind speeds rather than humidity contributes more to anomalous water vapor flux. The vertical shear of zonal winds and the meridional flow in the lower layer contribute more to the storm-relative environmental helicity. We conducted 20-member ensemble experiments with a 14 km mesh Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for the senjo-kousuitai event. We found that the initial variabilities of the water vapor over the area stretching from the East China Sea to the South China Sea and the wind fields over the western periphery of the North Pacific High are sensitive to the water vapor flux over the senjo-kousuitai area in Kyushu.
著者
Masato Sugi Yohei Yamada Kohei Yoshida Ryo Mizuta Masuo Nakano Chihiro Kodama Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-012, (Released:2020-03-19)
被引用文献数
30

In relation to projections of tropical cyclone (TC) frequency in a future warmer climate, there is a debate on whether the global frequency of TC seeds (weak pre-storm vortices) will increase or not. We examined changes in the frequency of TC seeds by occurrence frequency analysis (OFA) of vortex intensity (vorticity or maximum wind speed). We directly counted the number of vortices with various intensities in high resolution global atmospheric model simulations for present and future climates. By using the OFA we showed a clear reduction of the occurrence frequency of TC seeds and relatively weak (category 2 or weaker) TCs in a future warmer climate, with an increase in the frequency of the most intense (category 5) TCs. The results suggest that the OFA is a useful method to estimate the future changes in TC frequency distribution ranging from TC seeds to the most intense TCs.
著者
Yuta Goto Masaki Satoh
出版者
公益社団法人 日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.18A, no.Special_Edition, pp.15-20, 2022 (Released:2022-04-28)
参考文献数
31
被引用文献数
3

We statistically investigate characteristics of “senjo-kousuitai”, quasi-stationary linear precipitation systems, in East Asia using high-resolution satellite precipitation and reanalysis data to understand whether these events are common there. We define an elongated precipitation system in the satellite precipitation data as a senjo-kousuitai event.Our results show that the contribution of senjo-kousuitai to heavy rainfall is high in western Japan, especially in Kyushu, the Nansei Islands, and the East China Sea. Among the environmental factors favorable for the occurrence of senjo-kousuitai, low-level water vapor flux and vertical wind shear are essential to the development of senjo-kousuitai. As a typical case, we examine large-scale circulations associated with senjo-kousuitai events in Kyushu in the Baiu season (June to July), and found that they are generally characterized by the intensified Pacific High over the south of Kyushu and pressure trough to the north of Kyushu. This circulation pattern results in a stronger pressure gradient and higher low-level wind speeds over Kyushu. With respect to the previously noted importance of water vapor and wind speed for better prediction of senjo-kousuitai, we show that not water vapor but higher wind speeds are the main factor for the enhancement of low-level water vapor flux.
著者
Shuhei Matsugishi Hiroaki Miura Tomoe Nasuno Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.16A-003, (Released:2020-05-21)
被引用文献数
6

We show that a modification to the latent heat flux (LHF) formulation in Non-hydrostatic Icosahedral Atmospheric Model (NICAM) impacts the representation of a Madden–Julian oscillation (MJO) event during the Pre-Years of the Maritime Continent (Pre-YMC) field campaign in 2015. First, we compare the LHFs computed by the standard NICAM setting with those estimated from the ship observation during Pre-YMC. In this comparison, the NICAM LHF is smaller than observation in the low wind speed region and larger in the high wind speed region. Consequently, the MJO signal weakens when it passes over the Maritime Continent (MC). Next, sensitivity experiments are conducted with a modification to the threshold minimum wind speed in the bulk formula, to enhance the LHFs in the low wind speed region. With this modification, propagation of the MJO is better simulated over the MC, although a bias still remains without corrections in the high wind speed regions. This result indicates that increasing the LHF in the low wind speed region likely contributes to a more effective accumulation of moisture over the eastern MC region and consequently allows the MJO to pass over the MC in the model.
著者
Kentaro Ishijima Masayuki Takigawa Yousuke Yamashita Hisashi Yashiro Chihiro Kodama Masaki Satoh Kazuhiro Tsuboi Hidekazu Matsueda Yosuke Niwa Shigekazu Hirao
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.111-115, 2018 (Released:2018-08-21)
参考文献数
27
被引用文献数
3

Atmospheric radon-222 (222Rn) variability is analyzed and compared with model simulations made by the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), with three horizontal resolutions (223, 56, and 14 km), in order to understand high 222Rn events predominantly caused by frontal activities. Seasonal variations of event frequency are well reproduced by the model, with correlation coefficients of 0.79 (223 km) to 0.99 (14 km). The three horizontal resolutions can reproduce general features of the observed peak shapes of events in winter, which dominantly reflect the passage of cold fronts that trap dense amounts of 222Rn. Peak height and width are well reproduced by the 56 km and 14 km resolution models, while the 223 km resolution model shows much lower and broader peaks due to insufficient resolution. We also find that simulations of 222Rn and equivalent potential temperature gradient (|∇θe|) during the events show similar horizontal distributions around the 222Rn observation station, suggesting |∇θe| is a useful tool to understand the variability of atmospheric components around fronts. Consequently, model with horizontal resolution of 56 km and 14 km can well simulate spatiotemporal variations of atmospheric components driven by frontal activities, while 223 km resolution is not enough to reproduce them.
著者
Yuki Nishikawa Masaki Satoh
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.232-236, 2016 (Released:2016-08-31)
参考文献数
26
被引用文献数
3

As nonhydrostatic models have higher resolution, a topographical representation scheme is desirable as an alternative to the terrain-following approach, which is unstable for steep topography. We developed a conserved topographical representation scheme using a thin-wall approximation in z-coordinates (the CT scheme). This scheme is formulated by the flux-form finite-volume method with a flux limiter, so that the total integrals over the entire domain of prognostic variables are conserved: this is advantageous compared to the conventional thin-wall approximation method. The CT scheme is easily implemented for existing models that use the finite-volume method. We constructed the scheme to satisfy conservation of mass, horizontal momentum, and total energy. We compared the results of the CT scheme for an isolated mountain case with those of a step-mountain (SM) method. The CT scheme represents the propagation of gravity waves more accurately than the SM method. The upward flux of horizontal momentum becomes more vertically uniform for the CT scheme than for the SM method over time. In addition, the horizontal momentum budget shows that the total momentum is reduced by reaction force at the lower boundary with changes due to numerical damping in the upper layers and numerical filters in the free layers.
著者
Masaki Satoh Keisuke Hosotani
出版者
公益社団法人 日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.19A-001, (Released:2022-12-28)
被引用文献数
1

A sequence of heavy rainfall events due to quasi-stationary band-shaped precipitation systems, or “senjo-kousuitai”, was observed in the Kyushu region, Japan, from 3 to 8 July 2020. In this study, we investigate two of six indices that have previously been used to determine conditions favorable for senjo-kousuitai, i.e., water vapor flux at the height of 500 m and storm-relative environmental helicity. We examine the relationship between these indices and the occurrence of senjo-kousuitai over the past 20 years using the Japan Meteorological Agency 55-year reanalysis data. We show that the anomaly in wind speeds rather than humidity contributes more to anomalous water vapor flux. The vertical shear of zonal winds and the meridional flow in the lower layer contribute more to the storm-relative environmental helicity. We conducted 20-member ensemble experiments with a 14 km mesh Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for the senjo-kousuitai event. We found that the initial variabilities of the water vapor over the area stretching from the East China Sea to the South China Sea and the wind fields over the western periphery of the North Pacific High are sensitive to the water vapor flux over the senjo-kousuitai area in Kyushu.
著者
Philippe BARON Shoken ISHII Kozo OKAMOTO Kyoka GAMO Kohei MIZUTANI Chikako TAKAHASHI Toshikazu ITABE Toshiki IWASAKI Takuji KUBOTA Takashi MAKI Riko OKI Satoshi OCHIAI Daisuke SAKAIZAWA Masaki SATOH Yohei SATOH Taichu Y. TANAKA Motoaki YASUI
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.95, no.5, pp.319-342, 2017 (Released:2017-10-04)
参考文献数
42
被引用文献数
8

A feasibility study of tropospheric wind measurements using a coherent Doppler lidar aboard a super low altitude satellite is being conducted in Japan. The considered lidar uses a 2.05 μm laser light source of 3.75 W. In order to assess the measurement performances, simulations of wind measurements were conducted. The mission definition is presented in a companion paper (Part 1) while, in this paper, we describe the measurement simulator and characterize the errors on the retrieved line-of-sight (LOS) winds. Winds are retrieved from the Doppler-shift of the noisy backscattered signal with a horizontal resolution of 100 km along the orbit track and a vertical resolution between 0.5 and 2 km. Cloud and wind fields are the pseudo-truth of an Observing System Simulation Experiment while aerosol data are from the Model-of-Aerosol-Species-IN-the-Global-AtmospheRe (MASINGAR) constrained with the pseudo-truth wind. We present the results of the analysis of a full month of data in summer time for a near-polar orbiting satellite and a LOS nadir angle of 35°. Below ≈ 8 km, the ratio of good retrievals is 30-55 % and the median LOS wind error is better than 0.6 m s−1 (1.04 m s−1 for the horizontal wind). In the upper troposphere, the ratio is less than 15 % in the southern hemisphere and high-latitudes. However, the ratio is still 35 % in the northern Tropics and mid-latitudes where ice-clouds frequently occur. The upper-tropospheric median LOS-wind measurement error is between 1-2 m s−1 depending on the latitude (1.74-3.5 m s−1 for the horizontal wind). These errors are dominated by uncertainties induced by spatial atmospheric inhomogeneities.
著者
Shoken ISHII Philippe BARON Makoto AOKI Kohei MIZUTANI Motoaki YASUI Satoshi OCHIAI Atsushi SATO Yohei SATOH Takuji KUBOTA Daisuke SAKAIZAWA Riko OKI Kozo OKAMOTO Toshiyuki ISHIBASHI Taichu Y. TANAKA Tsuyoshi T. SEKIYAMA Takashi MAKI Koji YAMASHITA Tomoaki NISHIZAWA Masaki SATOH Toshiki IWASAKI
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.95, no.5, pp.301-317, 2017 (Released:2017-10-04)
参考文献数
57
被引用文献数
15

A working group is studying the feasibility of a future Japanese space-borne coherent Doppler wind lidar (CDWL) for global wind profile observation. This study is composed of two companion papers: an instrumental overview of the space-borne CDWL for global wind profile observation (Part 1), and the wind measurement performance (error and bias) investigated using a full-fledged space-borne CDWL simulator (Part 2). This paper aims to describe the future space-borne CDWL in terms of technical points and observation user requirements. The future mission concept is designed to have two looks for vector wind measurement with vertical resolutions of 0.5 (lower troposphere: 0-3 km), 1 (middle troposphere: 3-8 km), and 2 km (upper troposphere: 8-20 km) and horizontal resolution of < 100 km along a satellite. The altitude and orbit of the satellite are discussed from a scientific viewpoint. The candidate altitude and orbit of the satellite are 220 km and an inclination angle of 96.4° (polar orbit) or 35.1° (low-inclination-angle orbit). The technical requirements of the space-borne CDWL are a single-frequency 2-μm pulse laser with an average laser power of 3.75 W, two effective 40-cm-diameter afocal telescopes, a wide-bandwidth (> 3.4 GHz) detector, a high-speed analog-to-digital converter, and a systematic lidar efficiency of 0.08. The space-borne CDWL looks at two locations at a nadir angle of 35° at two azimuth angles of 45° and 135° (225° and 315°) along the satellite track. The future space-borne CDWL wind profile observation will fill the gap of the current global wind observing systems and contribute to the improvement of the initial conditions for numerical weather prediction (NWP), the prediction of typhoons and heavy rain, and various meteorological studies.
著者
Tsuyoshi Yamaura Yoshiyuki Kajikawa Hirofumi Tomita Masaki Satoh
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.9, pp.89-93, 2013 (Released:2013-07-17)
参考文献数
21
被引用文献数
3 5

The impact of a tropical cyclone on the northward migration of the Baiu frontal zone (BFZ) is investigated in the case of the tropical cyclone MAWAR (2012) using a global cloud-system resolving model, called NICAM. From 4 to 6 June in 2012, the BFZ rapidly shifts northward with MAWAR. A simulation with the initial data of 29 May reproduces the northward migration of the BFZ and the tropical cyclone. Strong southerlies on the eastern side of the tropical cyclone transport moist and high-temperature air into the BFZ. This horizontal advection affects the northward migration of the BFZ. In contrast, the BFZ stagnates to the south of Japan in another simulation with the initial data of 30 May because the tropical cyclone track is diverted eastward. Thus, realistic reproducibility of a tropical cyclone is needed for better simulations and prediction of the BFZ migration.
著者
Shunji Kotsuki Koji Terasaki Kaya Kanemaru Masaki Satoh Takuji Kubota Takemasa Miyoshi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15A, pp.1-7, 2019 (Released:2019-01-26)
参考文献数
25
被引用文献数
26

This paper is the first publication presenting the predictability of the record-breaking rainfall in Japan in July 2018 (RJJ18), the severest flood-related disaster since 1982. Of the three successive precipitation stages in RJJ18, this study investigates synoptic-scale predictability of the third-stage precipitation using the near-real-time global atmospheric data assimilation system named NEXRA. With NEXRA, intense precipitation in western Japan on July 6 was well predicted 3 days in advance. Comparing forecasts at different initial times revealed that the predictability of the intense rains was tied to the generation of a low-pressure system in the middle of the frontal system over the Sea of Japan. Observation impact estimates showed that radiosondes in Kyusyu and off the east coast of China significantly reduced the forecast errors. Since the forecast errors grew more rapidly during RJJ18, data assimilation played a crucial role in improving the predictability.
著者
Woosub ROH Masaki SATOH
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96, no.1, pp.55-63, 2018 (Released:2018-02-08)
参考文献数
34
被引用文献数
10

As an alternative approach to previous multisensor satellite evaluations for cloud system resolving models (CSRMs), a technique for precipitation clouds over the ocean of CSRMs is presented using combined infrared and microwave channels. This method quantitatively analyzes precipitation clouds using cloud-top temperatures and ice scatterings from infrared 11 μm and high frequency microwave (89.0 GHz) brightness temperatures (TBs). The TB threshold at low frequencies (18.7 GHz) is used to identify precipitation regions. This method extends a previous approach based on tropical rainfall measuring mission (TRMM) precipitation radar which uses a narrow coverage, by incorporating a wide passive microwave sensor swath and ice cloud sensitivity.  The numerical results of the non-hydrostatic icosahedral atmospheric model, NICAM, with two cloud microphysics schemes were evaluated over the tropical open ocean using this method. The scattering intensities in both simulations at 89.0 GHz were different due to the parameterizations of the snow and graupel size distributions. A bimodal snow size distribution improved the TB underestimation at 89.0 GHz. These results exhibited similar structures to the joint histograms of cloud-top temperatures and precipitation-top heights generated using the previous method; the frequencies of overestimated scattering intensities in this study and the frequencies of high precipitation-top heights above 12 km in the previous study. It was observed that the change in the snow size distribution in the cloud microphysics scheme can lead to better agreements of simulated TBs at 89.0 GHz. Furthermore, we investigated the impacts of nonspherical snow assumptions using a satellite simulator. The effect of a nonspherical snow shape in the radiative transfer model caused a smaller change in TBs at 89.0 GHz compared to the difference between the TBs of the two simulations without nonspherical assumptions.
著者
Daisuke Takasuka Tomoki Miyakawa Masaki Satoh Hiroaki Miura
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.11, pp.170-176, 2015 (Released:2015-12-21)
参考文献数
42
被引用文献数
3 16

The roles of topography on the propagation of the Madden-Julian Oscillation (MJO) are discussed using an aqua-planet of the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) with a 220-km horizontal mesh. Four topographical configurations with different land-sea masks and elevations are tested using a zonally non-uniform fixed-SST distribution. Explicit cloud microphysics is used to obtain MJO-like signals. Broad land cover generally weakens convection because of reduced surface latent heat flux (LHF). Forced lifting because of topography enhances local convection on the upwind side of high topography. It is suggested that the zonal contrasts of LHF are one reason for the delayed eastward propagation of the MJO-like disturbances. When only the eastern portion of the convective envelope is over land where the LHF is small, the LHF becomes rear-heavy, resulting in delayed eastward propagation. As the entire convective envelope proceeds over land, its contrast decreases or even reverses, resulting in faster eastward propagation.