著者
羽鳥 徳太郎
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.62, no.2, pp.133-147, 1987-10-23

日本海側に発生した元禄7年(1694)能代地震・宝永元年(1704)岩館地震・寛政4年(1793)鯵ケ沢地震および文化7年(1810)男鹿地震について,新史料を加えた震度分布図を示し,地震の規模を検討した.一方,史料をもとに各地の津波の高さを現地調査し,津波の規模を考察した.1939年男鹿地震(M=7.0)の震度分布と比べると,鯵ケ沢地震の規模はM=7.2,能代地震・岩館地震・男鹿地震はいずれもM=7.0と推定される.これらのマグニチュード値は,従来のものより0.1~0.2大きい.鯵ケ沢地震では鯵ケ沢~深浦間で3~5mの波高が確められ,津波マグニチュードはm=1と推定される.岩館地震の潮位記録は,深浦~滝ノ間間で0.6~1.4mの津波が伴ったことを示唆しており,津波マグニチュードはm=Oとみなせる.また,能代地震・男鹿地震では20~30cmの津波があったと考えられる.震度・津波および地殻変動のデータを考え合せると,震源域は西津軽~男鹿沿岸にそって並び,震源の大きさは30~50kmと推定される.
著者
羽鳥 徳太郎
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.55, no.2, pp.505-535, 1980-11-15

There are many old monuments of the Nankaido tsunamis of Hoei (Oct. 28, 1707) and the 2nd Ansei (Dec. 24, 1854) along the Osaka and Wakayama coasts, Western Japan. Most of these monuments were built just after the earthquakes to pray for the repose of the tsunami victims or to sound a warning to inhabitants. In this paper, the tsunami monuments are illustrated. Based on descriptions on the monuments, adding new data collected from the present field investigation, inundation heights of the 1707 Hoei and 1854 Ansei tsunamis along the Wakayama coast are surveyed by hand-level. Behaviors (inundation height and area) of the two historical tsunamis are compared with those of the 1946 Nankaido tsunami (Dec. 21, 1946). Inundation heights of the 1854 Ansei tsunami along the Wakayama coast, the west side of the Kii Peninsula, are 4.8 meters on the average and are 1.2 times as large as those of the 1946 Nankaido tsunami. The estimated heights of the 1707 Hoei tsunami are 5 meters with the localized run-up maximum of 6 to 7 meters. Along the Wakayama coast, the patterns of height distribution of the two historical tsunamis are similar to that of the 1946 Nankaido tsunami. However, the inundation heights of the 1707 Hoei and 1854 Ansei tsunamis along the coast in Osaka Bay are three times as large as those of the 1946 tsunami. Osaka suffered severe damage and many persons were drowned by the two tsunamis of 1707 and 1854. Estimated heights were about 3 meters. It suggests that the wave periods of the two historical tsunamis were longer than those of the 1946 tsunami. Although the source dimensions of the two historical tsunamis are similar to the 1946 tsunami (The source areas of three tsunamis extend 250 km along the Nankai trough), the rise times of crustal deformation for the two historical earthquakes differ significantly from the 1946 earthquake.
著者
羽鳥 徳太郎
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.61, no.1, pp.143-157, 1986-08-04

秋田県南部の象潟・金浦海岸に顕著な地殻変動と地震・津波被害をもたらした文化元年(1804年)象潟地震について,新史料を加えて震度分布を調べ,地震の規模を検討した.一方,津波史料をもとに各地の津波の高さを現地調査し,津波の規模および発生機構を考察した.震度6の範囲が本荘~酒田間60kmに及んだことは,今村の報告(1921)と変わりはないが,震度4の地域は青森・宮城県および新潟県下にまたがつた.その広がりから地震のマグニチュードはM=7.3と推定される.海岸の地盤高をふまえて津波の被害状況をみると,津波の高さは象潟付近で平均海面上4~5m,酒田では3~4mと推定される.そのほか周辺の波高分布から判断すれば,津波マグニチュード(今村・飯田スケール)はm=1.5と格付けできる.震度・地殻変動の分布を考え合せると,波源域の長径は本荘~酒田沿岸南北方向に,60kmと推定される.津波の規模は地震の規模に対して標準以上に大きく,この津波は高角の逆断層で起こされたものと考えられる.
著者
葉室 和親 荒牧 重雄 藤岡 換太郎 石井 輝秋 田中 武男 宇都 浩三
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.58, no.2, pp.527-557, 1983-10-22

1979年12月の淡青丸KT-79-18航海の際,東伊豆沖海底火山群,大島南方の大室出シ堆,新島東方の新島ウラノ瀬などの海底火山の岩石をドレッジにより採集した.東伊豆沖海底火山群は,岩石の鉱物・化学的特徴により北半部,中部,南部に細分することができる.北半部の岩石はすべて高アルカリソレアイト系列の玄武岩・安山岩溶岩であり,伊豆半島中部東部に分布する東伊豆単成火山群がそのまま海底に延長して孤立した海底火山として分布しているものと考えて差支えない.中部では,低アルカリ(低Na2O)ソレアイト系列の玄武岩が5点のドレッジから発見された.そのうち伊豆大島に近い2点は,伊豆大島火山の玄武岩類に似た鉱物・化学組成をもち,新鮮である.西側の3点の岩石はいずれも風化変質作用を受けており,小角礫の集合として産する.これらは伊豆大島火山や東伊豆単成火山群よりも古い海底火山に属するものと判断される.南部のドレッジ2点からは東伊豆単成火山群南西部のグループの岩石に似た玄武岩が得られた。大室出シは,ガラス質多孔質の新鮮な流紋岩溶岩流から成る平坦な頂部をもつ海底火山と考えられる.山体の中央部に深さ100m,長さ1.5km,幅0.5kmの凹陥地(大室海穴)があるが,その壁からは流紋岩溶岩が採集された.新島ウラノ瀬の南東麓からは,流紋岩溶岩と変質した玄武岩礫,石英閃緑岩礫などが採集された.後者はこの地域を構成する基盤岩類と考えられる.
著者
木村 敏雄
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.44, no.2, pp.561-607, 1966-10

Turbidites are developed in the Permian-Triassic Sambosan and the Jurassic-Cretaceous Shimanto group in Japan. The Turbidite sequences are well distributed in the Tamagawa district, the Kanto mountainous land, and in the Oigawa district (Fig. 1). The sequence in the latter district occupies the southern wing of a grand recumbent fold. Here, turbidite-poor shale, turbidite (the A formation), non-turbidite with turbidite (the B), turbidite (the C) and turbidite-poor shale formations are distributed. Average thickness and standard deviation of the sandstone and shale beds within each 5m column of strata were measured (Tables 1-3). Average thickness of sandstone beds varies with the horizon, especially with the major cyclic sedimentation. On the other hand the average thickness of shale beds is fairly constant in the turbidite sequences (the A and C formations). Thickness of the sandstone beds in the turbidite sequences shows log-normal distributions (Figs. 16, 17). However, that of the shale in the turbidite sequences shows distributions similar to the normal ones. The distributions are probably due to the fact that the shale deposition is proportional to time and that the time interval of turbidity currents is fair constant. This is confirmed by a fact that the number of turbidites during the deposition of a unit shale is fairly constant (Table 4). The standard deviation of thickness distribution is related to the thickest bed within each 5m column, especially for the sandstone beds. Thickness distributions of sandstone and shale beds in the turbidite-poor and the turbidite-rich sequences (the B formation) are quite different from those of the turbidite sequence (the A and the C formation) in the Oigawa (Fig. 18, Table 2) and show much wider distribution. The thickness of sandstone beds is not related to that of the overlying and the underlying shale beds in the A and C formation (Figs. 22, 23). However, turbidite beds in the turbidite-poor shale formation underlying the A formation are composed of a very thin sandstone part and rather thick silt part. In this case thickness of the overlying silt and shale appears to be related to that of the underlying sandstone part. The thickness of turbidite sandstone beds is also related to the clasticity (Fig. 24) and sedimentary structures. Sole marking is not common on the underside of the thinner beds (70cm or less). Laminated structures, convolute structures and other are common in the thinner beds (10cm or less), but not common in the thicker beds. In the turbidite together with the non-turbidite sequences there are cyclic sedimentations. Sandstone-shale diagrams (Figs. 6, 10, 11, 14, 15), total thickness (Figs. 4, 7, 13), average thickness and the thickest bed (Fig. 26) within 5m column, and accumulation of sandstone during the deposition of a unit thick shale (Figs. 8, 10, 15) show the cyclic sedimentations which are classified into major and minor ones. The major cyclic sedimentation is most well shown by the distribution of thickest bed within each 5m column (Fig. 26). The bed usually corresponds to the thickest bed within each minor cycle (Fig. 19). The major cycle may be related to transgression and regression and is not related to the chert deposition at Unazawa (Fig. 7). Minor cyclic sedimentations are further classified into "increasing" and "decreasing" types (Fig. 12). The "increasing" type appears to be generally formed during the regression, the "decreasing" type during the transgression. The minor cyclic sedimentations are well shown by the sandstone-shale diagrams as well as by the thickness distribution of sandstone beds according to the sedimentation order (Figs. 12, 20). There was a basin of the normal sedimentation with some steep cliffs at the regressional stage (Fig. 27), a part of this basin becoming the drainage of turbidity currents when the sea level was rather high. At the stage of transgression, shale deposited principally with muddy turbidites. The major cyclic sedimentation may have been formed under such a circumstance. The frequency of great earthquakes and the tectonic position in the westernmost Pacific near Japan are comparable with those of turbidite sequences in the Oigawa district, the turbidites having been probably produced by such earthquakes.二畳紀-三畳紀の三宝山層群,ジュラ紀-白亜紀の四万十層群にはTurbidites層が発達している.このTurbidite層は多摩川地域・南部大井川地域によく見られる(Fig. 1).大井川地域のこの層群は大きな横臥せしゅう曲の南翼をなしており, Turbiditeの少ない頁岩層, Turbidite層(A層), Turbiditeを伴うnon-Turbidite層(B層), Turbidite層(C層), Turbiditeの少ない頁岩層からなつている. 5mの厚さの地層の中の砂岩層の平均層厚(Table 1-3)は層準に応じて,特に堆積の大りんねに応じて変化する.一方頁岩層の平均屈厚はA, C層内では層準にかかわらずほぼ一定である.
著者
Ando Masataka
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.49, no.1/3, pp.19-32, 1971-09-30

The writer determined fault parameters of the great Kanto earthquake of 1923 on the basis of the geodetic data by triangulation and levelling. Thus he attempted to establish a dislocation model which reasonably explains all the available data on the surface displacements associated with this earthquake. Basically the fault line is assumed to extend from the Kozu area southeastward with its strike N45°W, parallel to the trend of the Sagami trough. The shape of the fault plane is assumed to be a rectangular plane. The fault models which was finally accepted is as follows. total length: 130km, width: 65km, dip. 45° and a fault displacement : 6 m (right lateral strike slip) and 3 m (reverse dip slip). Generally speaking, this earthquake seems to indicate a differential movements of the two crustal plates bounded by the Sagami trough. The fault's dimension, geometry and direction of the slip are all in good harmony with the seismological evidence on wave radiation.|1923年の関東大地震の震源パラノーターを地殻変動を使つて推定した.
著者
佃 為成 酒井 要 橋本 信一 羽田 敏夫 小林 勝
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.63, no.3, pp.p237-272, 1988-12

北部フォッサマグナの中央隆起帯を横断する千曲川構造線の東端に位置する長野県小県郡丸子町付近で1986年8月24日,M4.9の地震が発生した.ここは2つの火山前線がぶつかる点のすぐ背後でもある.通常の地震活動レベルは低いが,過去には1912年の上田市付近の地震(M5.2)がある.丸子町の地震活動は前震・本震・余震系列と本震の10日後から始まった群発地震が重なったものであった.2回の主要な活動ピークをもつ例は,北部フォッサマグナ地域では少なくなく,ピーク間の間隔は1918年大町地震の13時間,1969年焼岳の地震の2日,1912年上田の地震の5日,今回の地震の12日,1963年燕岳の地震の20日,1897年上高井の地震の104日というように様々である.2回目が群発地震であったのは丸子の地震と,燕岳の地震,上田の地震である.現地における臨時観測によって精密な震源分布が得られた.震源域は時間とともに拡大したが群発地震後最終的には東西3km,南北2km,深さは6kmを中心に3kmの幅をもつ拡がりであった.定常観測網で求めた震源との比較を行い,観測網に依存する震源の系統的なずれやその値のバラツキから震源の絶対精度と相対精度を推定した.MO~4.5の間のM別頻度分布はGutenberg-Richterの関係から少しずれる.群発地震の回数の減衰(p~2)は本震直後の余震のそれ(p~1)と比べ大きい.燕岳の地震ではどちらもp~2であった.本震の震源断層は発震機構及び余震分布の特性から西上り東落ちの高角逆断層である.これは中央隆起帯東縁でのテクトニックな変動と調和する.1986年の千曲構造線の地震活動はそのピークが東南東から西北西へ約150km/yearの速度で伝播した.1912年~1918年にもこの構造線の両端付近で地震があった.約70年の間隔を置いて同じような活動を繰り返したことになる.The earthquake of M 4.9 which occurred at Maruko town, eastern part of Nagano prefecture, at 11 h 34 m on August 24, 1986, was accompanied by foreshocks, ordinary aftershocks just after the main shock and peculiar swarm-like aftershocks that began 10 days after the event. Seismic sequences with double high adtivity peaks have occurred frequently in and around the northern Fossa Magna region; the intervals between the two peaks ranege from 13 hours to 104 days.
著者
Kanamori Hiroo Miyamura Setumi
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.48, no.2, pp.115-125, 1970-06-10

Old seismological data were used to re-evaluate the Great Kanto Earthquake of September 1, 1923. On the basis of reported P times at about one hundred stations the hypocenter parameters were determined as: origin time, 2h58m32s; latitude 35.4°N; longitude, 139.2°E; depth, 0 to 10km. The above epicenter may be uncertain by ±15 km. The surface-wave magnitude was re-evaluated using seismograms from 17 stations. The average value of 8.16 was obtained.|1923年9月1日の関東大地震の震源とマグニチュードを再決定した.震源決定に用いた資料はInternational Seismological Summaryや日本の文献に発表されているP波の発震時で約100の観測点の値を用いた.再決定された震源要素は次の通りである.震源時:02時58分32秒,震央緯度:35.4°N,震央経度:139.2°E,深さ:O~10km.この震央の誤差は±15km位である.マグニチュードの決定は,17ケ所の観測所で記録された周期20秒程度の表面波の振幅を用いて行なつた.平均値として8.16が得られた.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.59, no.4, pp.p519-531, 1984
被引用文献数
4

1741年北海道渡島半島沿岸から津軽地方にかけて襲った津波は,その規模の大きさからみて,地震によるものとする方が考え易い.しかし地震があったとする確かな古記録が,現在のところ見当っていない.そこで渡島大島の噴火によって発生するとしたら,どの程度の津波が期待できるかを見積った.渡島大島北側の大崩壊地形に見合う量の,土石なだれと,空気と混合した大規模な粉体流を仮定して,津波発生の数値実験を行った,結果は渡島沿岸の津波の高さが,1741年津波の1/3~1/4にしかならず,また津波のエネルギーも2桁位小さい.A great tsunami hit the Japan sea coast of Oshima and Tsugaru Peninsulas on Aug. 29, 1741. The idea that the tsunami was caused by the bottom deformation due to a large earthquake might be reasonable because the tsunami was ranked as one of the largest in the sea of Japan. However, there were no old records to prove the tremor or damage due to an earthquake, in contrast with the existence of many records on the eruption of the Oshima-Ohshima volcano.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.52, no.1, pp.p71-101, 1977
被引用文献数
14
著者
宇津 徳治
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.61, no.4, pp.p551-561, 1987-03
被引用文献数
2

日本のマントル最上部地震(深さ40~80km程度,ただし異常震域が現れる東日本の太平洋岸沖合の地震や北海道太平洋沿岸の地震を除く)に対する震度I(気象庁震度階級),震央距離Δ(km),マグニチュードM(気象庁方式)の標準的関係を表す実験式を132個の地震(M : 5~7)の震度データを用いて求めた.I-Δの平均回帰直線I=I100-b(Δ-100)の定数を,次の式でMと結んだものを提出する.I100=1.5M-6.1 b=0.0523-0.0063Mこれらの式によりあるM,Δに対する震度を求めたとき,得られた値の小数点以下を四捨五入したものが整数値で表される通常の震度になる.
著者
相田 勇
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.59, no.4, pp.519-531, 1985-03-30

1741年北海道渡島半島沿岸から津軽地方にかけて襲った津波は,その規模の大きさからみて,地震によるものとする方が考え易い.しかし地震があったとする確かな古記録が,現在のところ見当っていない.そこで渡島大島の噴火によって発生するとしたら,どの程度の津波が期待できるかを見積った.渡島大島北側の大崩壊地形に見合う量の,土石なだれと,空気と混合した大規模な粉体流を仮定して,津波発生の数値実験を行った,結果は渡島沿岸の津波の高さが,1741年津波の1/3~1/4にしかならず,また津波のエネルギーも2桁位小さい.
著者
羽鳥 徳太郎
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.61, no.1, pp.p143-157, 1986-08

秋田県南部の象潟・金浦海岸に顕著な地殻変動と地震・津波被害をもたらした文化元年(1804年)象潟地震について,新史料を加えて震度分布を調べ,地震の規模を検討した.一方,津波史料をもとに各地の津波の高さを現地調査し,津波の規模および発生機構を考察した.震度6の範囲が本荘~酒田間60kmに及んだことは,今村の報告(1921)と変わりはないが,震度4の地域は青森・宮城県および新潟県下にまたがつた.その広がりから地震のマグニチュードはM=7.3と推定される.海岸の地盤高をふまえて津波の被害状況をみると,津波の高さは象潟付近で平均海面上4~5m,酒田では3~4mと推定される.そのほか周辺の波高分布から判断すれば,津波マグニチュード(今村・飯田スケール)はm=1.5と格付けできる.震度・地殻変動の分布を考え合せると,波源域の長径は本荘~酒田沿岸南北方向に,60kmと推定される.津波の規模は地震の規模に対して標準以上に大きく,この津波は高角の逆断層で起こされたものと考えられる.
著者
羽鳥 徳太郎
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.62, no.3, pp.297-309, 1988-01-29

寛政5年1月7日(1793年2月17日)宮城沖に発生した地震の震度分布およびそれに伴う津波の高さを,新史料をもとに調べ,近年の宮城沖地震との比較から地震と津波の規模および波源域を考察した.各地の史料を調べた結果,震度5の範囲は岩手県中部から福島県北部に至る内陸部に分布し,震度4の範囲は東北地方から関東地方に広くまたがることが示された.1933年三陸地震・1978年宮城県沖地震などの震度分布との比較から,寛政地震のマグニチュードはM=7.8と推定された.一方,この地震に伴う津波の高さは,岩手県中部~牡鹿半島沿岸で3~5m,福島県沿岸では2~3mと推定された.筆者の方法(羽鳥,1986)によれば,津波マグュチュード(今村・飯田スケール)はm=2.5と見つもられ(1968年十勝沖津波と同じ規模),従来推定されていた値よりもやや大きい.震度および津波の高さの分布から,波源域は1897年8月の宮城沖津波の波源域を含むかたちで海溝付近にあり,長さ200km,幅80km程度の大きさであったと考えられる.
著者
Minakami Takeshi Utibori Sadao Yamaguchi Masaru Gyoda Noriya Utsunomiya Tokiko Hagiwara Michinori Hirai Kakuko
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.47, no.4, pp.721-743, 1969-09-30

昭和43年2月初句より,霧島火山群北部の加久藤カルデラ内部に,地鳴りを伴つた地震が発生しはじめたが,2月21日8時及び10時に,えびの町,京町南部では,局部的に震度6と推定される地震が発生し,えびの町,吉松町で多数の家屋が全壊し,山崩れ,道路の破損,水道管の破裂等多大の損害を生じた.