著者
土山 明
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.10, no.4, pp.262-270, 1996
被引用文献数
4

Possible relic biogenic activity in martian meteorite ALH84001 was proposed by McKay et al. (Science, 273,924-930, 1996). This ancient meteorite of 4.5 billion years old contains abundant carbonates as secondary minerals precipitated from a fluid on the martian surface. They showed the following lines of evidence for the ancient life; (1 ) unique mineral compositions and biominerals, (2) polycyclic aromatic hydrocarbons (PAHs) in association with the carbonates, and (3) unique structures and morphologies typical of nannobacteria or microfossils. This review is divided into two parts; one is on the martian meteorites in general and ALH84001, which has many features unlike other martian meteorites, and the other is on mineralogical (biomineralogical) and geochemical features of the carbonates and microfossil-like structures. There is little doubt that ALH84001 is from Mars as well as eleven other SNC meteorites. However, the mineralogical and biomineralogical evidence for martian bacteria given by McKay et al. (1996) is controversial, and could be formed by non-biogenic processes. Thus, further study of ALH84001 and other martian meteorites is required. We also need to consider the future Mars mission especially sample return mission.
著者
野口 高明 平田 成 土山 明 出村 裕英 中村 良介 宮本 英明 矢野 創 中村 智樹 齋藤 潤 佐々木 晶 橋本 樹明 久保田 孝 石黒 正晃 ゾレンスキー マイケル・E
出版者
日本惑星科学会
雑誌
遊・星・人 : 日本惑星科学会誌 (ISSN:0918273X)
巻号頁・発行日
vol.19, no.1, pp.12-22, 2010-03-25

はやぶさ探査機による小惑星イトカワ表面の画像から小惑星表面の巨礫の組織観察を行うことができた.イトカワ表面の巨礫は,大まかにいって不均質な破壊強度を持つものと,均質な破壊強度をもつものに分けられる.前者は角礫岩と考えても矛盾はない.一方,後者の組織は一般的なLLコンドライトには見られない.衝撃によってかなり溶融した普通コンドライト隕石は,そうでないものよりも均質でより高い破壊強度を持つことを考慮すると,後者の巨礫はそのような隕石と類似の岩質をもつかもしれない.これらの巨礫はイトカワの祖先天体で形成されたと考えられる.高解像度画像は小惑星の地史を検討する手段として非常に有効である.
著者
松本 徹 Dennis Harries 仲内 悠祐 浅田 祐馬 瀧川 晶 土山 明 安部 正真 三宅 亮 中尾 聡 Falko Langenhorst
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

硫化鉄はコンドライトや彗星塵などの初期太陽系物質に遍く含まれているが、星間空間や星周環境でのFeやSの存在形態はよく分かっていない。星間空間では固相の硫化鉄がほとんど確認されず、その原因として星間イオンの照射による硫化鉄の破壊機構が提案されている[1]。一方で、S型小惑星表面では硫黄のみが顕著に少ないことが報告されており、これは太陽風(太陽から飛ばされる荷電粒子)の照射や微小隕石衝突による硫化鉄からの硫黄の消失が原因であると推測されている[2]。こうした宇宙空間に曝された物質の変成作用を広い意味で宇宙風化と呼ぶ。銀河におけるFeやSの進化を解明する上で、宇宙風化が引き起こす硫化鉄の変成を具体的に理解することは重要である。小惑星イトカワから回収したレゴリス粒子は宇宙風化の痕跡が保存され[3]、月レゴリスに比べて硫化鉄を豊富に含む。そこで本研究ではイトカワ粒子の観察から、これまで報告が乏しかった硫化鉄の宇宙風化組織を記載し、その変成過程を明らかにすることを試みた。まず、宇宙科学研究所にて走査型電子顕微鏡(SEM)を用いて硫化鉄を含む11個のイトカワ粒子に対して、troilite(FeS)に注目して表面の観察を行った。その後2つの粒子に対しては、さらに集束イオンビーム装置(FIB)を用いて粒子の一部から厚さ約100nmの切片を切り出し、透過型電子顕微鏡(TEM)で切片の観察を行った。イトカワ粒子表面の観察の結果、ブリスター(水ぶくれ状の)構造がtroilite の表面に見られた。これらは粒子表面が太陽風照射を受けた証拠である[3]。一方で一部のtroilite表面はいびつで、ウィスカー状の組織がその表面から伸びていた。ウィスカーの幅は50nm-500nm、 高さは50nm-2μm 程度であった。ウィスカーは密集する領域で約500nmから1μm の間隔で存在した。TEM観察の結果troilite表面のウィスカーはα鉄であり、その伸長方向は低指数の結晶軸方向におよそ一致することが分かった。ウィスカーが発達しているtroiliteの表面下にはバブルで満ちた深さ90 nm程度の結晶質の層が存在し、ウィスカーはその最表面から発達していた。イトカワ粒子のバブル層は、太陽風の主要な構成イオンであるHイオンとHeイオンの蓄積に伴うH2・Heガスの発生により形成したと考えられる。本研究ではイトカワ粒子と比較するために硫化鉄への太陽風照射を模擬したH+照射実験も行なっており、同様のバブル構造が再現されている。イトカワ粒子表面のα鉄の存在は硫黄原子が粒子表面から失われたことを示唆している。その過程としては、硫黄の選択的なスパッタリングを引き起こす水素よりも重い太陽風イオンの打ち込み[4]や、バブル内部の水素ガスと硫化鉄との還元反応[5]などが考えられる。イトカワの近日点(0.95AU)での放射平衡温度(約400K)下において、硫化鉄中の鉄はウィスカー間の1μmの距離を10年程度の短い期間で拡散できるため[6]、鉄原子はtroilite中を拡散してウィスカーに十分供給される可能性がある。ウィスカーが低指数方向に成長していることは、成長方向を軸とする晶帯面のうち表面エネルギーの低い低指数面で側面を構成できるので、ウィスカーの表面エネルギーを最小化した結果であると考えられる。Feウィスカーの形態は、Ag2Sから発生するAgウィスカーやその他の様々な金属めっき表面で成長するウィスカーに類似している。それらの成長機構として提案されているようにtroiliteの内部応力に関連した自発的な成長[7]によってウィスカーが形成したのかもしれない。[1] Jenkins (2009) et. al. ApJ.700, 1299-1348. [2] Nittler et al. (2001) MAPS. 36, 1673-1695. [3] Matsumoto et al. (2015) Icarus 257, 230-238. [4] Loeffler et al. (2009) Icarus. 195, 622-629. [5] Tachibana and Tsuchiyama (1998) GCA. 62, 2005-2022. [6] Herbert et al. (2015) PCCP. 17, 11036-11041. [7] Chudnovsky (2008) 48th IEEE Conf., 140-150.
著者
山中 高光 永井 隆哉 大高 理 植田 千秋 土山 明 田窪 宏
出版者
大阪大学
雑誌
一般研究(C)
巻号頁・発行日
1993

プレートの流動現象や、沈み込むスラブの運動を把握するためにはダイナミカルな構造研究をする上で、地殻やマントルの構成鉱物の環境変化(温度・圧力・成分等)に伴って、生じる転移・分解・融解・結晶内イオン交換反応等の諸々の構造変化のカイネティックスや機構を究明することが重要な課題である。本実験ではケイ酸塩鉱物や類似鉱物の圧力誘起による構造変化と逐次観察と動的構造の研究を行った。1.マントルの主構成鉱物であるカンラン石(Mg_2SiO_4)について分子動力学(MD)計算を用いて圧力誘起の構造転移のシミュレーションを行った。室温では35〜40GPa圧力領域で圧力誘起非晶質相転移が生じ、95〜100GPaで未記載な結晶構造に再結晶化することが計算から明らかになった。ダイヤモンドアンビル高圧発生装置と放射光X線を用いた高圧実験でカンラン石のGe置換体のMg_2GeO_4の圧力誘起非晶質相転移を実際に確認した。2.マフィックな珪酸塩鉱物が海洋地殻で水和物に変質し、それらがサブダクションでの低温(<500℃)で応力下での構造安定性を調べ水の挙動を研究する。そのためCa(OH)_2の圧力誘起相転移と準安定相の存在領域を放射光X線回折実験で決定しその機構を解明した。その結果水和鉱物は高圧下では脱水反応はせず、非晶質相として地殻内部にもたらされ、これらがマグマなどに重要な水の起源として考えられる。3.マルチアンビル高圧発生装置に装着し、SiO_2の同一の多形構造転移を示すGeO_2の圧力誘起非晶質相転移した物質についてS波とP波の弾性波速度を測定し、体積圧縮率や剛性率を求めた。これらの弾性波速度の温度・圧力変化の研究はサブダクション・ゾーンで生じる深発地震の発生の解明にも貢献した。また分子動力学から求められた温度圧力関数にした弾性常数の変化と比較し検討した。
著者
土山 明 中野 司
出版者
大阪大学
雑誌
特定領域研究
巻号頁・発行日
2005

本研究は、火山爆発の原因であるマグマ発泡現象のアナログ実験として含水珪酸塩ガラスの加熱発泡実験をおこない、高分解能X線CT装置によるマイクロトモグラフィーを用いた3次元構造の時間発展(4次元構造)の観察法と解析法を確立し、さらにこれにより発泡過程とそのメカニズムを理解しようとするものである。平成17年度に含水流紋岩質ガラス(黒曜石)を用いて確立した観察法・解析法を、本年度は含水玄武岩質ガラスに適用した。天然物には実験に適したサンプルがないので、サンプルは内熱式高圧炉で合成した。これをステンレス製の字具に固定し、一定温度(675,700℃)で一定時間(5〜20分)加熱後冷却しCT撮影をおこなうというサイクルを繰り返した。CT撮影はSPring-8のBL20B2においておこなった(25keV、画素サイズ:3.14μm1344x1344マトリクス)。これにより、従来知られていない発泡様式を発見した。玄武岩質ガラスではサンプルの壁などから不均一核形成が始まり、数100ミクロンの泡へと成長していく。やがてサンプル壁のある場所より、多数の微細な泡(1ミクロン程度)が発生し、この泡に富む部分がシャープな境界を持ちながらサンプル内部に向かって一定速度で進行し、やがて発泡は停止する。流紋岩質ガラスでは均一核形成・成長によってのみ発泡を続けたのと対照的である。多数の微細な泡の生成によって、効率的に水を系外に逃がすことができるので、非爆発的な噴火が予想される。実際の高温での減圧発泡においても、この発泡様式がおこるとすれば、玄武岩質マグマの非爆発的な噴火を、今回新しく発見した発泡様式で説明することができる。今後、さらなる超高分解能でのCT撮影や、条件を変えた実験、また天然の玄武岩の組織観察などにより、これを検証することが必要である。