著者
春山 純一 橋爪 光 鹿山 雅裕 長岡 央 仲内 悠祐 Haruyama Junichi Hashizume Ko Kayama Masahiro Nagaoka Hiroshi Nakauchi Yusuke
出版者
宇宙航空研究開発機構(JAXA)
雑誌
宇宙航空研究開発機構研究開発報告 = JAXA Research and Development Report (ISSN:24332216)
巻号頁・発行日
vol.JAXA-RR-18-001, pp.1-8, 2018-06-20

将来の有人月面活動を目指した探査の重要課題の一つとして, 「月の極の水氷」の存否, その量の調査が挙げられる. 月の極に水氷が期待されるのは, 月に対して, いくつかの水の供給源が存在する可能性があり, 月面に供給された水が, 濃集し, かつまたは安定的に存在できる可能性が, 極低温域となる永久陰にあるからである. しかし, 隕石や彗星の落下衝突した際の衝撃加熱で失われることもあるだろう. 更に, 現在の永久陰は過去においては永久陰でなかった可能性が指摘されており, 地質学的に長期間永久陰となっていて水氷を集積できる場所は無いとも言われる. 実際, これまでの探査機による観測では, 水氷発見を報告するものがあるが, 月の極の水氷の存在について決定的証拠を出したといえるものがない. データや解釈を整理してみると, 数%もの「水氷」の存在というデータの解釈には多くの難点があるともいえる. 一方で, 太陽風起源の水素が月極域に打ち込まれ留まっている可能性もある. 最新の中性子分光計による計測結果だと, 最も濃集しているところ(40K以下の永久陰など)で470ppm程度と報告されているが, この水素濃集見積もりは(水の形を取るにしても)妥当なところではないかと思われる. 月は, 人類が宇宙へと活動の場を拡げていくときの橋頭堡で有り, その探査は重要不可欠である. だからこそ, 今後, 有人月面活動を目指した探査について議論, 企画していくうえで, 最新の科学的知見を十分に加味, 考慮した上で進めていくことが必要である.
著者
仲内 悠祐 佐藤 広幸 長岡 央 佐伯 和人 大竹 真紀子 白石 浩章 本田 親寿 石原 吉明
雑誌
日本地球惑星科学連合2021年大会
巻号頁・発行日
2021-03-24

Smart Lander for Investigating Moon (SLIM) project will demonstrate a “pin-point” landing within a radius of 100 m on the lunar surface. It will be launched in FY2022. The SLIM aims “SHIOLI” crater (13.3º S, 25.2º E) to derive the detailed mineralogy of the olivine-rich exposures to investigate the composition of the lunar mantle or deep crustal material, and understand their origin. The Multi Band Camera (MBC) is the scientific instrument on board SLIM lander to obtain Mg# (= molar Mg / (Mg + Fe)) of lunar mantle materials. The MBC is composed of a Vis-InGaAs imaging sensor, a filter-wheel with 10 band-pass filters, a movable mirror for panning and tilting, and an autofocus system. The MBC observes the boulders and regolith distributed around the lander. Since various distances to the objects are expected from a few meters to infinity, the MBC is equipped with an auto-focus (AF) system. The MBC uses the jpeg compression technique. An image with maximum sharpness taken in a best focus position will have the largest image file size after JPEG compression. Using this characteristic, the AF algorithm is designed to automatically find the focus lens position that maximizes the image file size after jpeg compression. Our AF system has been tested using the Engineering Model of MBC (MBC-EM). The imaging target is a picture of lunar surface obtained by previous spacecrafts and basaltic rocks from Hawaii. Our results suggest that the amount of initial movement is important parameter. In the presentation, we will show the results of AF system, and MBC operation plan.
著者
松本 徹 Dennis Harries 仲内 悠祐 浅田 祐馬 瀧川 晶 土山 明 安部 正真 三宅 亮 中尾 聡 Falko Langenhorst
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2018年大会
巻号頁・発行日
2018-03-14

硫化鉄はコンドライトや彗星塵などの初期太陽系物質に遍く含まれているが、星間空間や星周環境でのFeやSの存在形態はよく分かっていない。星間空間では固相の硫化鉄がほとんど確認されず、その原因として星間イオンの照射による硫化鉄の破壊機構が提案されている[1]。一方で、S型小惑星表面では硫黄のみが顕著に少ないことが報告されており、これは太陽風(太陽から飛ばされる荷電粒子)の照射や微小隕石衝突による硫化鉄からの硫黄の消失が原因であると推測されている[2]。こうした宇宙空間に曝された物質の変成作用を広い意味で宇宙風化と呼ぶ。銀河におけるFeやSの進化を解明する上で、宇宙風化が引き起こす硫化鉄の変成を具体的に理解することは重要である。小惑星イトカワから回収したレゴリス粒子は宇宙風化の痕跡が保存され[3]、月レゴリスに比べて硫化鉄を豊富に含む。そこで本研究ではイトカワ粒子の観察から、これまで報告が乏しかった硫化鉄の宇宙風化組織を記載し、その変成過程を明らかにすることを試みた。まず、宇宙科学研究所にて走査型電子顕微鏡(SEM)を用いて硫化鉄を含む11個のイトカワ粒子に対して、troilite(FeS)に注目して表面の観察を行った。その後2つの粒子に対しては、さらに集束イオンビーム装置(FIB)を用いて粒子の一部から厚さ約100nmの切片を切り出し、透過型電子顕微鏡(TEM)で切片の観察を行った。イトカワ粒子表面の観察の結果、ブリスター(水ぶくれ状の)構造がtroilite の表面に見られた。これらは粒子表面が太陽風照射を受けた証拠である[3]。一方で一部のtroilite表面はいびつで、ウィスカー状の組織がその表面から伸びていた。ウィスカーの幅は50nm-500nm、 高さは50nm-2μm 程度であった。ウィスカーは密集する領域で約500nmから1μm の間隔で存在した。TEM観察の結果troilite表面のウィスカーはα鉄であり、その伸長方向は低指数の結晶軸方向におよそ一致することが分かった。ウィスカーが発達しているtroiliteの表面下にはバブルで満ちた深さ90 nm程度の結晶質の層が存在し、ウィスカーはその最表面から発達していた。イトカワ粒子のバブル層は、太陽風の主要な構成イオンであるHイオンとHeイオンの蓄積に伴うH2・Heガスの発生により形成したと考えられる。本研究ではイトカワ粒子と比較するために硫化鉄への太陽風照射を模擬したH+照射実験も行なっており、同様のバブル構造が再現されている。イトカワ粒子表面のα鉄の存在は硫黄原子が粒子表面から失われたことを示唆している。その過程としては、硫黄の選択的なスパッタリングを引き起こす水素よりも重い太陽風イオンの打ち込み[4]や、バブル内部の水素ガスと硫化鉄との還元反応[5]などが考えられる。イトカワの近日点(0.95AU)での放射平衡温度(約400K)下において、硫化鉄中の鉄はウィスカー間の1μmの距離を10年程度の短い期間で拡散できるため[6]、鉄原子はtroilite中を拡散してウィスカーに十分供給される可能性がある。ウィスカーが低指数方向に成長していることは、成長方向を軸とする晶帯面のうち表面エネルギーの低い低指数面で側面を構成できるので、ウィスカーの表面エネルギーを最小化した結果であると考えられる。Feウィスカーの形態は、Ag2Sから発生するAgウィスカーやその他の様々な金属めっき表面で成長するウィスカーに類似している。それらの成長機構として提案されているようにtroiliteの内部応力に関連した自発的な成長[7]によってウィスカーが形成したのかもしれない。[1] Jenkins (2009) et. al. ApJ.700, 1299-1348. [2] Nittler et al. (2001) MAPS. 36, 1673-1695. [3] Matsumoto et al. (2015) Icarus 257, 230-238. [4] Loeffler et al. (2009) Icarus. 195, 622-629. [5] Tachibana and Tsuchiyama (1998) GCA. 62, 2005-2022. [6] Herbert et al. (2015) PCCP. 17, 11036-11041. [7] Chudnovsky (2008) 48th IEEE Conf., 140-150.