著者
寺杣 友秀
出版者
日本評論社
雑誌
数学セミナー (ISSN:03864960)
巻号頁・発行日
vol.43, no.6, pp.53-57, 2004-06
著者
寺杣 友秀
出版者
一般社団法人 日本数学会
雑誌
数学 (ISSN:0039470X)
巻号頁・発行日
vol.57, no.3, pp.255-266, 2005-07-26 (Released:2008-12-25)
参考文献数
49
被引用文献数
1
著者
寺杣 友秀 小木曽 啓示 吉川 謙一 細野 忍 松本 圭司
出版者
東京大学
雑誌
基盤研究(C)
巻号頁・発行日
2004

(1) Goncharovによるpolylog complexからmotifの拡大の群への写像の研究を進めた。この写像の存在いくつかの仮定のもとでBeilinson-Deligneにより研究されている。その仮定のひとつがBeilinson-Soule予想とKπ1予想であるが、これを仮定せずにバー構成法を回復原理を用いて構成した。(2) バー構成法から得られるホップDGA上の余加群とDGAに付随するDG圏のホモトピー同値性を用いて、テイト混合ホッジ構造の圏の基本群をドリニュDGAから構成をした。(3) 正標数のFp-局所系を分類する副p基本群をArtin-Schrier DGAのバー構成法を用いて構成した。このともホモトピー=シャッフル積を構成することにより、群的元の概念を定義した。(4) 高次算術幾何平均を定義し、高い種類の超楕円曲線に関するTomaeの公式を用いて、ある種のCalabi-Yau多様体の周期で算術幾何平均を表す公式を導いた。(5) 種数3の曲線から得られるCayley Octadとprojective dualで分岐するCalabi-Yau多様体の周期の間に代数的対応を用いて単射を得た。またこれが外積代数の形にならないことをホッジ構造の無限小変形を用いて観察した。