著者
向井 茂 金銅 誠之 森 重文 中山 昇 井出 学 大橋 久範 髙木 寛通
出版者
京都大学
雑誌
基盤研究(B)
巻号頁・発行日
2010-04-01

Enriques曲面は古典的で非常に興味深い代数曲面である.ルート不変量にE7型格子をもつものを詳しく調べ、モジュラー不変量を用いて標準的楕円fibrationの定義方程式を書き下した.大橋久範と共同で,Enriques曲面にMathieu 型の半シンプレクティック作用をもつ有限群を分類し,Nikulinと金銅による有限自己同型Enriques曲面の分類の発展として,自己同型群が概アーベルなEnriques曲面を分類した.どの研究もEnriques曲面のルート不変量の厳密な定式化が成功の鍵である。高次数偏極K3曲面については,種数16のK3曲面のモジュライの単有理性を証明した.
著者
桂 利行 斎藤 毅 斎藤 毅 寺杣 友秀 向井 茂 金銅 誠之 中村 郁 石井 志保子 石田 正典 G. van der Geer
出版者
法政大学
雑誌
基盤研究(S)
巻号頁・発行日
2007

代数多様体は、いくつかの多項式の共通零点として定義される図形であり、数学の基本的な研究対象である。本研究では、標数がp>0の世界で、代数多様体を研究し、a-数、b-数、h-数という不変量を定義して、それらの間の関係を明らかにし、応用を与えた。また、標準束が自明であるK3曲面という代数多様体を標数2、3で考察し、超特殊と言われる場合に、その上の非特異有理曲線の配置の様子を解明し、格子の理論と関係を明らかにした。
著者
金銅 誠之 江口 徹 伊藤 由佳理 伊山 修 馬 昭平 菅野 浩明 長尾 健太郎 向井 茂 島田 伊知朗 小木曽 啓示 吉川 謙一 宮本 雅彦
出版者
名古屋大学
雑誌
基盤研究(S)
巻号頁・発行日
2010-04-01

いくつかの方程式の共通零点の集まりとして定まる図形(代数多様体)の構造や対称性および図形のある種の分類(モジュライ空間)を行うことが代数幾何の大きな問題である。楕円曲線の2次元版としてK3曲面と呼ばれる代数多様体が19世紀に発見され、現在、数学および数理物理でも興味を持たれている。本研究において、K3曲面のモジュライ空間の構造の解明や、K3曲面の対称性を表す自己同型群の記述などの成果を得た。またK3曲面の対称性とマシュー群と呼ばれる有限単純群との間の不思議な関係を示唆するマシュームーンシャイン現象と呼ばれるものが関心を集めているが、この方面での研究においても成果をあげた。
著者
金銅 誠之 島田 伊知朗 小木曽 啓示 伊山 修 馬 昭平 菅野 浩明 江口 徹
出版者
名古屋大学
雑誌
基盤研究(S)
巻号頁・発行日
2015-05-29

研究代表者は標数2、Artin 不変量1の超特異K3曲面を標準被覆に持つエンリケス曲面は3種類に限ること、およびそれらの具体的な構成を与えた。分担者 馬はジーゲルモジュラー多様体上の普遍アーベル多様体やそのコンパクト化上の多重標準形式とジーゲルモジュラー形式の対応を与え、久我族の小平次元の評価を得た。分担者 菅野は複素 Chern-Simons 理論の正準量子化から導かれる U(1) 同変な変形 Verlinde 代数とある種の 4 次元超共形場理論の超共形指数が定める2次元位相的場の理論の対応関係に関して研究を行った。分担者 島田は超越格子のディスクリミナントが小さい特異K3曲面上のエンリケス対合を分類し、さらに階数10の双曲的ユニモジュラー偶格子の交点形式を2倍にしたものから階数26の双曲的ユニモジュラー偶格子への埋め込みを分類した。分担者 小木曽は複素Enriques曲面の自己同型の正エントロピーの最小値を決定し、さらに素体上超越次数が正である任意の奇素数標数の代数閉体上、K3曲面と双有理な滑らかな射影代数曲面でその全自己同型群が非有限生成であるものの存在を示した。また、素体上超越次数が零である任意奇素数標数の代数閉体上では、K3曲面と双有理な滑らかな射影代数曲面の全自己同型群は常に有限生成であることも示した。近年のCohen-Macaulay表現論は、導来圏・三角圏を制御する傾理論の影響を大きく受けて発展していが、分担者 伊山は主要な研究成果に関するサーベイをICM 2018のproceedingsに執筆した。
著者
向井 茂 中山 昇 橋本 光靖 金銅 誠之 齋藤 政彦 藤野 修 行者 明彦 浪川 幸彦 梅村 浩 寺西 鎮男 齊藤 博
出版者
京都大学
雑誌
基盤研究(A)
巻号頁・発行日
1998

1)幾何学的不変式論を再構成した。また、曲線状のベクトル束のモジュライ空間をQuotスキームというものを使わずに構成した。両者相まってベクトル束のモジュライ理論は大幅に簡易化され見通しよくなった。多くの発展がこの基礎付けのもとになされると期待する。(例えば、Jacobi多様体の退化)2)放物や安定対のような構造付きベクトル束のモジュライも上と同じように構成が見通しよくなった。おかげで共形ブロックの個数に関するVerlinde公式を不変式環のHilbert級数の明示と捉えることができるようになった。この公式の周辺に集まる多くの数学(アフィンLie環、Hecke環や量子群など)を不変式の観点から純代数的に理解できるようになると期待している。。3)穴あきRiemann球(=点付き射影直線)上の構造付きベクトル束のモジュライのmaster spaceは2次元加法群の多項式環への平方零作用の不変式環をその座標環としてもつ。このことより、この環の有限生成性が従う。これと下の成果を合わせて加法群の平方零作用に対するHilbertの第14問題を解決した。(2002年3月学会で報告)4)永田の反例を改良することによって3次元加法群の18変数多項式環への平方零作用の不変式環で無限生成なものを構成した。この環と、5次元射影空間を9点で爆発したものの全座標環との間の同型(永田トリック)が重要であるが、これの新証明も与えた。5)二つのK3曲面の直積上のある種のHodgeサイクルの代数性(Shafarevich予想)に対して新しい証明を見つけた。6)偏極Abel曲面に対して2重レヴェルを考案し、それ付きのモジュライを研究した。(1,d)型でdが5以下のときは正多面体群を使って綺麗な多様体になる。今後は次元公式を計算し、保型形式環を研究すべきと考えている。
著者
齋藤 秀司 小林 亮一 松本 耕二 藤原 一宏 金銅 誠之 佐藤 周友 斎藤 博 向井 茂 石井 志保子 黒川 信重 藤田 隆夫 中山 能力 辻 元
出版者
名古屋大学
雑誌
基盤研究(B)
巻号頁・発行日
1999

当該研究は(I)高次元類体論および(II)代数的サイクルの研究のふたつの大きな流れからなる。(I)高次元類体論は高木-Artinにより確立された古典的類体論の高次元化とその応用を目指している。この理論の目指すところは数論的多様体のアーベル被覆を代数的K理論を用いて統制することで、幾何学的類体論とも言える。整数環上有限型スキームにたいする高次元類体論は当該研究以前に加藤和也氏との一連の共同研究により完全な形で完成することに成功した。高次元類体論はその後もρ進Hodge理論などの数論幾何学の様々な理論を取り入れつつ展開し、世界的なレベルで研究が続けられている。当該研究の高次元類体論における成果として、整数論においてよく知られた基本的定理であるAlbert-Brauer-Hasse-Noetherの定理の高次元化に関する結果がある。(II)主要な目標は"代数的サイクルを周期積分により統制する"という問題に取り組むことである。この問題の起源は19世紀の一変数複素関数論の金字塔ともいえるAbelの定理である。当該研究の目指すところはAbelの定理の高次元化である。これは"高次元多様体X上の余次元γの代数的サイクルたちのなす群を有理同値で割った群、Chow群CH^γ(X)の構造をHodge理論的に解明する"問題であると言える。この問題への第一歩として、Griffithsは1960年代後半Abel-Jacobi写像を周期積分を用いて定義し、CH^γ(X)を複素トーラスにより統制しようと試みた。しかし1968年MumfordがCH^γ(X)はγ【greater than or equal】2の場合に一般には複素トーラスといった既知の幾何学的構造により統制不可能なほど巨大な構造をもっており、とくにAbel-Jacobi写像の核は自明でないことを示した。このような状況にたいし当該研究はBloch-Beilinsonによる混合モチーフの哲学的指導原理に従い、GriffithsのAbel-Jacobi写像を一般化する高次Abel-Jacobi写像の理論を構成し、GriffithsのAbel-Jacobi写像では捉えきれない様々な代数的サイクルをこれを使って捉えることに成功した。この結果により高次Abel-Jacobi写像がAbelの定理の高次元化の問題にたいする重要なステップであることが示された。当該研究はさらに発展しつつあり、Blochの高次Chow群、Beilinson予想、対数的トレリ問題、などの様様な問題への応用を得ることにも成功している。