著者
松井 利仁 平松 幸三 長田 泰公 山本 剛夫
出版者
一般社団法人日本音響学会
雑誌
日本音響学会誌 (ISSN:03694232)
巻号頁・発行日
vol.59, no.2, pp.80-85, 2003-02-01
被引用文献数
3

沖縄県は1997年に県内の飛行場周辺に航空機騒音のモニタリングシステムを設置した。本報告では,モニタリングシステムによって集積された測定資料を用い,嘉手納,普天間飛行場周辺の騒音曝露の現状を示している。両飛行場周辺では,昼夜を分かたず広範囲で高レベルの騒音が観測されており,特に嘉手納飛行場近傍では,夜間においても110dBを超える騒音レベルが記録されていた。また,防衛施設庁の定める騒音に基づく地域区分との関連を検討したところ,嘉手納飛行場周辺では,離着陸コース直下を除いて,今回算出したWECPNLが防衛施設庁の地域区分より低い値となったが,普天間飛行場周辺では両者がほぼ一致した。
著者
平松 幸三 箕浦 一哉 松井 利仁 宮北 隆志 長田 泰公 山本 剛夫
出版者
一般社団法人日本音響学会
雑誌
日本音響学会誌 (ISSN:03694232)
巻号頁・発行日
vol.56, no.8, pp.556-564, 2000-08-01
参考文献数
24
被引用文献数
1

特殊空港周辺で実施されている家屋防音工事が生活実態上どの程度生活環境の改善に寄与しているのかを検討するため, 嘉手納基地周辺において質問紙調査を行い, 家屋防音工事の実施状況, それに対する満足度と効果の有無並びにうるささ, 生活妨害, 環境質に関する回答を分析した。その結果によると, 騒音曝露地区では, 家屋防音工事への満足度が高く, その効果を評価する回答が多かったが, 高度曝露地区ではそれらの回答率が著しく低かった。多重ロジスティック分析を行って生活妨害の反応に関するオッズ比を家屋防音工事実施群と非実施群とで比較したところ, 両群において反応に差が認められなかった。このことから家屋防音工事が生活環境を改善することにはなっていない, と結論された。
著者
松井 利仁 平松 幸三 長田 泰公 山本 剛夫
出版者
一般社団法人日本音響学会
雑誌
日本音響学会誌 (ISSN:03694232)
巻号頁・発行日
vol.58, no.1, pp.20-24, 2001-12-25
参考文献数
9
被引用文献数
2

沖縄県には在日米軍専用施設面積の約75%に及ぶ基地が存在し, 沖縄本島の約20%を米軍基地が占めている。嘉手納・普天間飛行場は人口の稠密な地域に位置しており, 約48万人(県人口の38%)が環境基準を超える航空機騒音に曝露されていると推定されている。このような状況に鑑み沖縄県は航空機騒音曝露による住民影響に関する疫学調査を行った。本報告では, 航空機騒音の健康影響調査の基礎的資料として, 過去の騒音曝露量の推定を行っている。ベトナム戦争以降の現存する騒音測定資料を分析し, それに基づいて各種騒音評価量を推定している。また, 防衛施設庁が定めている騒音区分の妥当性についても検討を加えている。
著者
渡久山 朝裕 松井 利仁 平松 幸三 宮北 隆志 伊藤 昭好 山本 剛夫
出版者
一般社団法人日本衛生学会
雑誌
日本衛生学雑誌 (ISSN:00215082)
巻号頁・発行日
vol.64, no.1, pp.14-25, 2009 (Released:2009-02-26)
参考文献数
16
被引用文献数
1 1

Objectives: To investigate the association between aircraft noise exposure as expressed by Weighted Equivalent Continuous Perceived Noise Level (WECPNL) and preschool children’s misbehaviours around the Kadena and Futenma airfields in Okinawa. Methods: A questionnaire survey on children’s misbehaviour was conducted in nursery schools and kindergartens around the Kadena and Futenma airfields. The children living around the Kadena airfield were divided into four groups according to WECPNL at their residences and those around the Futenma airfield into three groups according to WECPNL. The subjects were 1,888 male and female preschool children, 3 to 6 years of age, whose parents, caregivers, and teachers answered the questions. The answers used for the analysis were limited to those of respondents fulfilling the following conditions: parents living with their children, fathers with a daytime job, and mothers with a daytime job or no job. Thus, the number of valid answers was 1,213. The responses were analysed using logistic regression models taking the number of misbehaviours related to the items of Biological Function, Social Standard, Physical Constitution, Movement Habit, or Character as the dependent variables, and WECPNL, age, sex, size of family, birth order, mother’s age at birth, mother’s job, caregiver’s career, and category of subject as the independent variables. Results: A significant dose-response relationship was found between the odds ratio and WECPNL for the outcomes of Physical Constitution around the Kadena and Futenma airfields. Conclusions: It would be reasonable to conclude that the aircraft noise exposure is a factor that increases the number of preschool children’s misbehaviours.
著者
庄司 光 山本 剛夫 高木 興一
出版者
一般社団法人日本音響学会
雑誌
日本音響学会誌 (ISSN:03694232)
巻号頁・発行日
vol.22, no.6, pp.350-361, 1966-11-30
被引用文献数
12

In order to investigate whether the critical band concept can be applied to the problem of temporary threshold shift (TTS) , three experiments (I, II, III) were carried out using five subjects with normal hearing acuity. In experiment I, thirteen high pass and thirteen low pass noises obtained by filtering white noise were used. The cut-off frequency of these noises are shown in Fig. 1. They were at intervals of 1/6 octave. The over-all SPL of white noise was 95dB. Durations of exposure were 5, 15, 35 and 55 minutes, and post-exposure threshold measurements at 3, 4, 6 and 8kc were made whithin 3 minutes after cessation of exposure. Fig. 2 shows the results of experiment. TTS due to low pass and high pass noises increased to a certin value as the bandwidth became larger, but when it reached to this limiting value, it remained constant regardless of the bandwidth of exposure noise. It may be concluded from this fact that only those components of the noise which are included in limited frequency regions are effective and that the components beyond this regions are ineffective in TTS. This is in agreement with the basic notion of the critical band. In experiment III, twelve exposure noises having linear spectrum were used (Table 1). The spectra of these noises are given in Fig. 3. TTS at nine frequencies from 0. 5kc to 8kc were measured within about 6 minutes after cessation of 20 minutes' exposure. Fig. 4 shows the TTS due to exposure to these noises at a level of 100dB. As a whole, 0dB/oct noise was most effective and -6dB/oct noise least effective. But TTS at frequencies below 2kc were not noticeable in all cases. In experiment III, four 1/6 octave-band noises (2240-2500cps, 2800-3150cps, 4500-5000cps, 5600-6300cps) whose spectrum level are equal to that of 0dB/oct noise at 100dB were used. Test frequencies and exposure time were the same as in experiment II. Fig. 5 indicates the results of this experiment. The maximum effects were found at 3, 4, 6 and 8kc respectively for the exposure noise 2240-2500cps, 2800-3150cps, 4500-5000cps, and 5600-6300cps. Using the data obtained from experiment II and III, the center frequency and width of the critical band were estimated by the following method. 1) Estimation of the center frequency of the critical band. The basic assumption is that TTS at frequency F is expressed as TTS_F=aX+b. . . . . . . . . . (1) a, b: Constants that depend on exposure time, test frequency, and the time when TTS is measured. X: Critical band level and is expressed as X=S(F_c)+10log_<10>&lrtri;f. . . . . . . . . . (2) S(f_c): Spectrum level at the center frequency of the critical band f_c: Center frequency of the critical band &lrtri;f: Critical bandwidth When the spectrum of noise is a linear function of log_2f, S(fc)=αlog_2f_c+β. . . . . . . . . . (3) α: Spectrum slope (dB/oct) β: intercept (dB) From Equations (1), (2) and (3), TTS_F=a(αlog_2f_c+β-L). . . . . . . . . . (4) where L≡-(10log_<10>&lrtri;f+b/a) Equation (4) means that TTS becomes a linear function of the spectrum level at the center frequency of the critical band. Using the data of experiment II, the value of a, f_c, and L were calculated for 3, 4, 6 and 8kc by the following least squre method. &lrtri;=Σ{y_i-a(α_ilog_2f_c+β_i-L)}^2 ∂&lrtri;/(∂a)=0, ∂&lrtri;/(∂f_c)=0, ∂&lrtri;/(∂L)=0 where y_i is TTS produced by noise whose spectrum is α_ilog_2f+β_i. The results are shown in Fig. 6. From these figures, it is noticed that TTS is expressed as a linear function of spectrum level at the center frequency of the critical band. Center frequencies are about one-third to two-third octave below test frequencies. 2) Estimation of the critical bandwidth. Let the TTS at certin frequency produced by wide-band noise (I) in Fig. 7 be Y, and the TTS by narrow-band noise (II) whose cut-off frequencies are included in the critical band be y, then Y=a(S_1+10log_<10>&lrtri;f)+b y=a(S_2+10log_<10>&lrtri;F)+b S_1: Spectrum level of Noise