著者
近藤 誠 佐藤 陽祐 稲津 將 勝山 祐太
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

This study evaluated microphysical schemes implemented in a meteorological model SCALE (Nishizawa et al. 2015; Sato et al. 2015) targeting midwinter snowfall events in Hokkaido. Cloud microphysical schemes of a 2-moment bulk scheme (Seiki and Nakajima 2014: SN14), a 1-moment bulk scheme of Roh and Satoh (2014: RS14), and that of Tomita (2008: T08) were evaluated with the simulation for events, based on ground-based measurement by disdrometer. Our analysis elucidated that SN14 successfully simulated the measured relationship between the particle size and terminal velocity distribution (PVSD). On the other hand, T08 overestimated the frequency of graupel with fast fall velocity, and underestimated particle diameters. RS14 also overestimated the frequency of the graupel, but reproduced the fall velocity of graupel particles. Sensitivity experiments indicated that RS14 scheme can be improved by the modification for the slope parameter, mass-diameter(m-D) relationship, and PVSD relationship of graupel.ReferencesNishizawa, S., H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita, 2015: Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev., 8, 3393–3419, https://doi.org/10.5194/gmd-8-3393-2015.Roh, W., and M. Satoh, 2014: Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical central pacific. J. Atmos. Sci., 71, 2654–2673, https://doi.org/10.1175/JAS-D-13-0252.1.Sato, Y., S. Nishizawa, H. Yashiro, Y. Miyamoto, Y. Kajikawa, and H. Tomita, 2015: Impacts of cloud microphysics on trade wind cumulus: which cloud microphysics processes contribute to the diversity in a large eddy simulation? Prog. Earth Planet. Sci., 2, https://doi.org/10.1186/s40645-015-0053-6.Seiki, T., and T. Nakajima, 2014: Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71, 833–853, https://doi.org/10.1175/JAS-D-12-0195.1.Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteorol. Soc. Japan, 86A, 121–142, https://doi.org/10.2151/jmsj.86A.121.