著者
上野 健爾
出版者
一般社団法人 日本物理学会
雑誌
日本物理学会誌 (ISSN:00290181)
巻号頁・発行日
vol.43, no.10, pp.785-794, 1988-10-05 (Released:2008-04-14)
参考文献数
10
著者
上野 健爾 西村 慎太郎 落合 博志 鈴木 淳 三野 行徳 入口 敦志 田中 大士 陳 捷 青田 寿美 神作 研一
出版者
人間文化研究機構国文学研究資料館
雑誌
国文研ニューズ = NIJL News (ISSN:18831931)
巻号頁・発行日
no.42, pp.1-16, 2016-01-22

●メッセージ異分野間の共同研究と国際ネットワーク構築への夢●研究ノート東日本大震災で被災した医学書と近世在村医――福島県双葉町泉田家文書の世界――『毘沙門堂本古今集注』の書誌的問題シーボルト本『北斎写真画譜』の行方●トピックスマレガ・プロジェクトシンポジウムinバチカン「キリシタンの跡をたどる」特別展示「韓国古版画博物館名品展」と国際ワークショップ「東アジアの絵入刊本」平成27年度国文学研究資料館「古典の日」講演会第39回国際日本文学研究集会大学共同利用機関シンポジウム2015「研究者に会いに行こう! ――大学共同利用機関博覧会――」参加記ようこそ国文研へ総合研究大学院大学日本文学研究専攻の近況
著者
上野 健爾 土屋 昭博 河野 俊丈 伊達 悦朗 神保 道夫 柏原 正樹 松本 尭生 三輪 哲二
出版者
京都大学
雑誌
重点領域研究
巻号頁・発行日
1992

本研究は重点領域研究「無限自由度の可積分系の理論とその応用」の成果取りまとめのために行われた。平成4年度から5年間にわたって行われた本重点領域研究では無限自由度の可積分系の理論を中心に数多くの重要な成果が得られたが、これらの成果を有機的にまとめ、今後の研究へのひとつの指針を与えることが本研究の目指したものである。具体的には2次元格子模型、共形場理論、量子群、3,4次元トポロジー、無限自由度の可積分系と関係した代数幾何学に関してさらに研究を進め、今までに得られた成果をさらに高い立場から見直すことを行った。この結果、Calabi-Yau多様体のミラー対称性や量子コホモロジー群、量子群の表現と古典関数のq類似、3,4次元多様体の位相不変量などに関する研究において新しい知見が得られた。さらにこれらの成果は、非線型幾何学とも呼ぶべき新しい幾何学が背後にあることを強く示唆している。特に深谷のグループはCalabi-Yau多様体のミラー対称性を幾何学的に新しい見地から論じ、今後の研究に重要な一歩を踏み出した。また本年度の研究によって、神保のグループを中心に離散的Painleve方程式が幾何学的な構造を持つことが明瞭にされ、可積分系のもつ幾何学的構造の豊かさが改めて明らかになった。今後は、本重点領域研究の成果に基づき、非線型幾何学の建設へ研究が大きく前進していくことが期待される。
著者
上野 健爾 加藤 文元 川口 周 望月 新一 高崎 金久 桂 俊行 木村 弘信 山田 泰彦 江口 徹 森脇 淳 加藤 和也 吉田 敬之 三輪 哲二 丸山 正樹
出版者
京都大学
雑誌
基盤研究(S)
巻号頁・発行日
2002

上野のグループは複素単純リー代数をゲージ対称性に持つ共形場理論(WSWN モデル)とアーベル的共形場理論を使ってモジュラー函手を構成し、このモジュラー函手から構成される位相的場の理論の性質を解明した。また、共形場理論で登場するモジュラー変換を記述するS行列が種数0のデータから完全に決まることを示した。さらに共形場理論の応用として4点付き球面の写像類群のNielsen-Thurston分類を考察し、この分類が正整数n≧2を固定したときに量子SU(n)表現から決定できることを示した。加藤文元のグループはこれまで提案されている中では一番広い意味での剛幾何学の建設を推進し、モジュライ空間の幾何学のもつ数論的側面を代数幾何学的に極限まで推し進めた。望月新一は代数曲線とその基本群との関係およびabc予想の定式化を巡って、代数曲線のモジュライ理論に関する今までとは異なる圏論的なアプローチを行い、函数体や代数体の被覆や因子の概念の圏論的に一般化して捉えることができるFrobenioidsの理論の構築、エタール・テータ函数の理論の構築など、今後のモジュライ理論のとるべき新しい方向を示唆する重要な研究を行った。さらに、モジュライ空間の代数幾何学的・数論幾何学的研究で多くの新しい成果が得られた。無限可積分系の理論に関しては、高崎金久のグループは種々の可積分系を考察し、モジュライ空間がソリトン理論でも重要な役割をしていることを示した。また、パンルヴェ方程式とモジュライ空間との関係、無限次元代数と関係する統計モデルの考察、旗多様体の量子コホモロジーに関して種々の重要な成果が得られた。本研究によってモジュライ空間が当初の予想以上に深い構造を持ち、また数学の基礎そのものとも深く関わり、その理解のためには、さらに数学的な精緻な道具を作り出していく必要があることが明らかになった。また、そのための準備やヒントの多くが本研究を通して明らかになった。
著者
上野 健爾
出版者
科学基礎論学会
雑誌
科学基礎論研究 (ISSN:00227668)
巻号頁・発行日
vol.43, no.1-2, pp.3-15, 2016-03-30 (Released:2017-08-31)
参考文献数
59

In the present notes we shall discuss history of algebraic geometry form Riemann to today. Emphasis is placed on the development in 20th century. We shall show that there are three driving forces of the development, namely the Riemann hypothesis of algebraic curves over finite fields, theory of algebraic functions and compact Riemann surfaces, and geometry of algebraic curves and surfaces.
著者
上野 健爾 稲見 武夫
出版者
一般社団法人日本物理学会
雑誌
日本物理學會誌 (ISSN:00290181)
巻号頁・発行日
vol.43, no.10, pp.785-794, 1988-10-05

1 0 0 0 関孝和全集

著者
[関孝和著] 上野健爾 [ほか] 編
出版者
岩波書店
巻号頁・発行日
2023
著者
上野健爾著
出版者
日本評論社
巻号頁・発行日
1999
著者
上野 健爾 杉江 徹 森脇 淳 河野 明 神保 道夫 丸山 正樹
出版者
京都大学
雑誌
一般研究(C)
巻号頁・発行日
1990

代数多様体,複素多様体は近年理論物理学との密接な関係が見出され、従来の数学研究とは違った観点からの興味ある現象が見出され、数学そのものの再編成が行われつつある。本研究もこうした新しい観点から研究を行ったものである。以下得られた主要な成果を記す。1.Z上の共形場理論と複素コボルディズム環桂利行,清水勇二との共同研究において,自由フェルミオンの共形場理論が整数環Z上定義できること,ボゾン化によってZ上の無限変数の多項式環が生じることを示したが,本年度さらに共同研究によって,理論は複素コボルディズム理論と密接な関係を持つことが明らかになった。特に,複素コボルディズム環でチャ-ン類を取る操作とシュ-ア多項式の関係を明らかにし,複素多様体の特性類とKP方程式系のτ函数との関係も明らかにした。2.非ア-ベル的共形場理論の算術化土屋昭博,山田泰彦との共同研究によって得られた単純リ-環をゲ-ジ対称性に持つ共形場理論が,有理数体上定義され代数曲線のモジュライ空間上の数論的代数幾何学として展開できることを示した。さらに種数Oの代数曲線上の共形場理論に限ると,さらに理論は整数環Z上定義されることを示した。3.ベクトル束および連接層のモジュライ空間の研究丸山正樹は射影的代数多様体上の放物的安定層の概念を導入しモジュライ空間を構成することに成功した。また森脇淳は準安定偏曲ファイバ-空間の概念を導入し,ボゴモロフ・ギ-ゼカ-不等式を一般化することに成功した。これはモジュライ空間の研究に応用が見込まれている。
著者
上野 健爾 山田 泰彦 齋藤 政彦 加藤 文元 神保 道夫 齋藤 秀司
出版者
京都大学
雑誌
基盤研究(A)
巻号頁・発行日
2001

上野はJ.Andersenとの共同研究で,曲線が退化する際のアーベル的共形場理論(bc系の理論)を構成した.この結果は,非アーベル的共形場理論からモジュラー函手を構成する際に,アーベル的共形場理論の分数ベキとのテンソル積を取ることが必要となり,点付き代数曲線のモジュライ空間の境界でのテンソル積の挙動を調べるために使われた.さらに,このモジュラー函手から構成される3次元多様体の不変量は,リー代数がsl(2,C)の時はReshetikhin-Turaevが構成した不変量と一致することがほぼ明らかになった.証明の詳細な詰めは次年度の研究で行う予定である.また,上野はアーベル的共形場理論を代数曲面の場合に拡張するための予備的な考察を行った.齋藤政彦はパンルヴェ方程式の初期値空間の研究を行い,初期値空間として登場する岡本・パンルヴェ対が逆にパンルヴェ方程式を決定することを,岡本・パンルヴェ対に変形理論を適用することによって示した.山田は多変数のパンルヴェ方程式を対称性の観点から研究した.また,神保は量子場の相関関数とq直交多項式との関連を考察した.また,齋藤秀司は非特異代数多様体のChow群に関するBloch-Beilinsonフィルター付けについて考察した.加藤はMumford曲線に関する研究を行い,Mumford曲線を被覆として持つ非アルキメデス的オービフォールドの特徴付けを与え,またモジュライ空間でのMumford曲線のなす軌跡の性質について新しい知見を得た.またMumfordによる擬射影平面の志村多様体としての具体的な構成を与えた.
著者
上野 健爾
出版者
日本評論社
雑誌
数学のたのしみ
巻号頁・発行日
vol.2005, pp.138-151, 2005