著者
三輪 哲二
出版者
一般社団法人 日本物理学会
雑誌
日本物理学会誌 (ISSN:00290181)
巻号頁・発行日
vol.43, no.8, pp.626-632, 1988-08-05 (Released:2008-04-14)
参考文献数
10

2次元イジング模型というのは, まことに "世界と世界のあいだの林" (C.S. ルイス「魔術師のおい」岩波少年文庫)のような所で, ところどころに静かな水をたたえた池があって, モジュラー不変性という緑色の指輪をまわしながらその池に飛び込むと, そこには一つの世界がひろがっていて…. conformal field theory という世界から帰ってきた我々は, もう一度隣の池に飛び込んでみる. するとそこにひろがる世界は, Baxterという名のライオンによって作られたcommuting transfer matrixという国で….
著者
三輪 哲二
出版者
一般社団法人日本物理学会
雑誌
日本物理學會誌 (ISSN:00290181)
巻号頁・発行日
vol.43, no.8, pp.626-632, 1988-08-05

2次元イジング模型というのは, まことに "世界と世界のあいだの林" (C.S. ルイス「魔術師のおい」岩波少年文庫)のような所で, ところどころに静かな水をたたえた池があって, モジュラー不変性という緑色の指輪をまわしながらその池に飛び込むと, そこには一つの世界がひろがっていて…. conformal field theory という世界から帰ってきた我々は, もう一度隣の池に飛び込んでみる. するとそこにひろがる世界は, Baxterという名のライオンによって作られたcommuting transfer matrixという国で….
著者
上野 健爾 土屋 昭博 河野 俊丈 伊達 悦朗 神保 道夫 柏原 正樹 松本 尭生 三輪 哲二
出版者
京都大学
雑誌
重点領域研究
巻号頁・発行日
1992

本研究は重点領域研究「無限自由度の可積分系の理論とその応用」の成果取りまとめのために行われた。平成4年度から5年間にわたって行われた本重点領域研究では無限自由度の可積分系の理論を中心に数多くの重要な成果が得られたが、これらの成果を有機的にまとめ、今後の研究へのひとつの指針を与えることが本研究の目指したものである。具体的には2次元格子模型、共形場理論、量子群、3,4次元トポロジー、無限自由度の可積分系と関係した代数幾何学に関してさらに研究を進め、今までに得られた成果をさらに高い立場から見直すことを行った。この結果、Calabi-Yau多様体のミラー対称性や量子コホモロジー群、量子群の表現と古典関数のq類似、3,4次元多様体の位相不変量などに関する研究において新しい知見が得られた。さらにこれらの成果は、非線型幾何学とも呼ぶべき新しい幾何学が背後にあることを強く示唆している。特に深谷のグループはCalabi-Yau多様体のミラー対称性を幾何学的に新しい見地から論じ、今後の研究に重要な一歩を踏み出した。また本年度の研究によって、神保のグループを中心に離散的Painleve方程式が幾何学的な構造を持つことが明瞭にされ、可積分系のもつ幾何学的構造の豊かさが改めて明らかになった。今後は、本重点領域研究の成果に基づき、非線型幾何学の建設へ研究が大きく前進していくことが期待される。
著者
上野 健爾 加藤 文元 川口 周 望月 新一 高崎 金久 桂 俊行 木村 弘信 山田 泰彦 江口 徹 森脇 淳 加藤 和也 吉田 敬之 三輪 哲二 丸山 正樹
出版者
京都大学
雑誌
基盤研究(S)
巻号頁・発行日
2002

上野のグループは複素単純リー代数をゲージ対称性に持つ共形場理論(WSWN モデル)とアーベル的共形場理論を使ってモジュラー函手を構成し、このモジュラー函手から構成される位相的場の理論の性質を解明した。また、共形場理論で登場するモジュラー変換を記述するS行列が種数0のデータから完全に決まることを示した。さらに共形場理論の応用として4点付き球面の写像類群のNielsen-Thurston分類を考察し、この分類が正整数n≧2を固定したときに量子SU(n)表現から決定できることを示した。加藤文元のグループはこれまで提案されている中では一番広い意味での剛幾何学の建設を推進し、モジュライ空間の幾何学のもつ数論的側面を代数幾何学的に極限まで推し進めた。望月新一は代数曲線とその基本群との関係およびabc予想の定式化を巡って、代数曲線のモジュライ理論に関する今までとは異なる圏論的なアプローチを行い、函数体や代数体の被覆や因子の概念の圏論的に一般化して捉えることができるFrobenioidsの理論の構築、エタール・テータ函数の理論の構築など、今後のモジュライ理論のとるべき新しい方向を示唆する重要な研究を行った。さらに、モジュライ空間の代数幾何学的・数論幾何学的研究で多くの新しい成果が得られた。無限可積分系の理論に関しては、高崎金久のグループは種々の可積分系を考察し、モジュライ空間がソリトン理論でも重要な役割をしていることを示した。また、パンルヴェ方程式とモジュライ空間との関係、無限次元代数と関係する統計モデルの考察、旗多様体の量子コホモロジーに関して種々の重要な成果が得られた。本研究によってモジュライ空間が当初の予想以上に深い構造を持ち、また数学の基礎そのものとも深く関わり、その理解のためには、さらに数学的な精緻な道具を作り出していく必要があることが明らかになった。また、そのための準備やヒントの多くが本研究を通して明らかになった。
著者
三輪 哲二
出版者
一般社団法人日本物理学会
雑誌
日本物理學會誌 (ISSN:00290181)
巻号頁・発行日
vol.36, no.11, pp.798-802, 1981-11-05

2次元イジング模型の2点相関函数は, サイン・ゴルドン(sine-Gordon)方程式の特殊解となる. この特殊解はパンルヴェ超越函数と呼ばれる新種の特殊函数である. パンルヴェ超越函数とは何か. 本稿は, クライン・ゴルドン(Klein-Gordon)方程式の分岐した解を, 場の量子論を使って構成するという点から, これを解説したい.
著者
柏原 正樹 西山 亨 行者 明彦 三輪 哲二 岡田 聡一 黒木 玄 寺田 至 小池 和彦 山田 裕史 谷崎 俊之 中島 俊樹 中屋敷 厚 織田 孝幸
出版者
京都大学
雑誌
基盤研究(A)
巻号頁・発行日
1997

この科研費による計画においては、リー群・量子群・へッケ環などの表現論を数理物理学・組合わせ論との関係から研究した。以下、各年次における活動を記す。初年度(1997)においては、特にRIMS project1997(等質空間上の解析とLie群の表現)とタイアップして計画を遂行した。このプロジェクト研究では、等質空間という幾何的観点にたった実Lie群の表現の研究に焦点をあてた。海外からのべ約40名の参加者があり国際的な共同研究・研究交流の場が提供できた。この成果は、Advanced Studies in Pure Mathematics,vol.26に発表された。1998年は、RIMS project 1998(表現論における組合わせ論的方法)とタイアップして計画を遂行した。このプロジェクト研究では、海外からのべ約25名の参加者があり、量子群・アフィンへッケ環の表現論と組合わせ論を中心にして計画を行った。1999年は、国際高等研究所と数理解析研究所において"Physical Combinatorics"の国際シンポジュウムを開催し、数理物理と関連して研究を行った。量子群の表現論、Kniznik-Zamolodhikov方程式とそのq-変形の解の性質や共形場理論の研究を推進した。その成果は、"Physical Combinatorics,Progress in Math,vol.191,Birkhauserに発表された。2000年度は、計画の最終年として"数理物理における表現論および代数解析的方法の応用"を中心とする研究成果の発表を目的として、"Mathphys-Odyssey 2001"という国際シンポジュウムを開催した。この会議録は、Birkhauser出版から出版される予定である。
著者
柏原 正樹 有木 進 谷崎 俊之 中島 俊樹 加藤 周 三輪 哲二 SCHAPIRA Pierre KANG Seok-Jin VILONEN Kari D'AGNOLO Andrea
出版者
京都大学
雑誌
基盤研究(B)
巻号頁・発行日
2010-04-01

この5年間の表現論に関連した研究の成果として大きなものが3点挙げられる。第一は、確定特異点型ホロノミーD-加群のリーマン・ヒルベルト対応を不確定特異点型ホロノミーD-加群に拡張したこと(A. D'Agnoloとの共同研究)、第二は、余次元3予想の肯定的解決(K. Vilonenとの共同研究)、第三は、円分箙ヘッケ代数を用いた量子群の表現の圏化である(S-J. Kangとの共同研究)。