著者
星野 健 大竹 真紀子 唐牛 譲 白石 浩章
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

Introduction:Recently, it has been suggested that water ice might be present in the lunar polar region based on spectral measurements of artificial-impact-induced plumes in the permanently shadowed region, and remote sensing observation of the lunar surface using a neutron spectrometer [1], [2] and visible to infrared spectrometer [3]. In addition to the scientific interest about the origin and concentration mechanism of the water ice, there is strong interest in using water ice (if present) as an in-situ resources. Specifically, using water ice as a propellant will significantly affect future exploration scenarios and activities because the propellant generated from the water can be used for ascent from the lunar surface and can reduce the mass of the launched spacecraft of lunar landing missions.However, currently it is unclear if water ice is really present in the polar region because of the currently limited available data. Therefore, we need to learn that by directly measuring on the lunar surface. If there is water ice, we also need to know it’s quantity (how much), quality (is it pure water or does it contain other phases such as CO2 and CH4), and usability (how deep do we need to drill or how much energy is required to derive the water) for assessing if we can use it as resources. Therefore, JAXA is studying a lunar polar exploration mission that aims to gain the above information and to establish the technology for planetary surface exploration [4]. JAXA is also studying possibility of implementing it within the framework of international collaboration with Indian Space Research Organisation (ISRO).Spacecraft configuration:The spacecraft system comprises a lander system and a rover system. The system does not have a communication relay satellite but is based on direct communication with the Earth. The minimum target for the landing payload mass is several-hundred kilograms. The launch orbit is the lunar transfer orbit (LTO). After the spacecraft reaches the Moon it is inserted into a circular orbit having a 100km altitude via a few orbital changes. During powered-descent phase, the position of the lander is estimated by landmark navigation using shadows created by the terrain. After landing, the rover is deployed on the lunar surface using ramps. The rover then prospects water ice with its observation instruments..Spacecraft configuration:The spacecraft system comprises a lander system and a rover system. The system does not have a communication relay satellite but is based on direct communication with the Earth. The minimum target for the landing payload mass is several-hundred kilograms. The launch orbit is the lunar transfer orbit (LTO). After the spacecraft reaches the Moon it is inserted into a circular orbit having a 100km altitude via a few orbital changes. During powered-descent phase, the position of the lander is estimated by landmark navigation using shadows created by the terrain. After landing, the rover is deployed on the lunar surface using ramps. The rover then prospects water ice with its observation instruments..Landing site selection:Considering the mission objectives and condition of the lunar polar region, we listed the following parameters as constraints.- Presence of water- Surface topography- Communication capability- Duration of sunshineAs a first trial of the landing site selection, sunshine is simulated using digital elevation models to obtain the sunlight days per year and the number of continuous sunshine periods at each site. Also, slope and the simulated communication visibility map from the Earth are created. These conditions can be superimposed to select the landing site candidate.Current status:Recently, we finished joint mission definition review (JMDR) with ISRO, in which JAXA provide a launch rocket and a rover while ISRO provide a lander system. Related to the instruments which will be carried on the rover or the lander, JAXA selected several candidate instrument study teams for accelerating development of these instruments. In this presentation, we are going to introduce current status of the mission planning.References:[1] Feldman W. C. et al. (1998) Science, 281, 1496-1500.[2] Sanin A. B. et al. (2017) Icarus, 283, 20-30.[3] Pieters C. M. et al. (2009) Science, 326, 568-572.[4] Hoshino T. et al. (2017) 68th IAC, IAC-17-3.2B.4.
著者
白石 浩章 山田 竜平 石原 吉明 小林 直樹 鈴木 宏二郎 田中 智
出版者
日本惑星科学会
雑誌
遊・星・人 : 日本惑星科学会誌 (ISSN:0918273X)
巻号頁・発行日
vol.21, no.3, pp.283-288, 2012-09-25
参考文献数
15

多点ネットワークを構成して火星表層環境および内部構造を観測するペネトレータミッションを提案する.現在の火星内部で生じているダイナミクスを反映する地震活動度と熱的状態を調査するとともに,地球型惑星の分化過程を反映する地殻-上部マントル構造と固体内部から表層および大気層への物質輸送過程に関する知見を得ることを目的とする.ペネトレータモジュールは突入速度300m/secで火星表層下2〜3mに潜り込むプローブ本体に,耐熱シールドと空力減速機構の役割をする膜面展開型柔構造エアロシェルを統合することで小型軽量なシステムを構成する.周回衛星から分離された4機のペネトレータは,火成活動の可能性が指摘されるElysium地域に最大300km間隔のネットワークを構成して地震観測や熱流量観測を行う.一方,柔構造エアロシェルには圧力計,温度計,磁力計,カメラを搭載して大気突入時のモニタリングを行う.
著者
仲内 悠祐 佐藤 広幸 長岡 央 佐伯 和人 大竹 真紀子 白石 浩章 本田 親寿 石原 吉明
雑誌
日本地球惑星科学連合2021年大会
巻号頁・発行日
2021-03-24

Smart Lander for Investigating Moon (SLIM) project will demonstrate a “pin-point” landing within a radius of 100 m on the lunar surface. It will be launched in FY2022. The SLIM aims “SHIOLI” crater (13.3º S, 25.2º E) to derive the detailed mineralogy of the olivine-rich exposures to investigate the composition of the lunar mantle or deep crustal material, and understand their origin. The Multi Band Camera (MBC) is the scientific instrument on board SLIM lander to obtain Mg# (= molar Mg / (Mg + Fe)) of lunar mantle materials. The MBC is composed of a Vis-InGaAs imaging sensor, a filter-wheel with 10 band-pass filters, a movable mirror for panning and tilting, and an autofocus system. The MBC observes the boulders and regolith distributed around the lander. Since various distances to the objects are expected from a few meters to infinity, the MBC is equipped with an auto-focus (AF) system. The MBC uses the jpeg compression technique. An image with maximum sharpness taken in a best focus position will have the largest image file size after JPEG compression. Using this characteristic, the AF algorithm is designed to automatically find the focus lens position that maximizes the image file size after jpeg compression. Our AF system has been tested using the Engineering Model of MBC (MBC-EM). The imaging target is a picture of lunar surface obtained by previous spacecrafts and basaltic rocks from Hawaii. Our results suggest that the amount of initial movement is important parameter. In the presentation, we will show the results of AF system, and MBC operation plan.