著者
Atsushi Inagaki Yovita Wangsaputra Manabu Kanda Meral Yücel Naoyuki Onodera Takayuki Aoki
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-021, (Released:2020-06-08)
被引用文献数
2

The similarity of the turbulence intensity profile with the inner-layer (i.e. from the ground to the top of the logarithmic layer) and the outer-layer (i.e. from the top of the inner layer to top of the boundary layer) scalings were examined for an urban boundary layer using numerical simulations. The simulations consider a developing neutral boundary layer over realistic building geometry with and without a slightly upsloping terrain. The computational domain covers an 19.2 km by 4.8 km and extends up to a height of 1 km, and is resolved by 2-m grids. Several turbulence intensity profiles are defined locally in the computational domain. The inner- and outer-layer scalings work well reducing the scatter of the turbulence intensity within the inner- and outer-layers, respectively, regardless of the surface geometry. Although the main scatters among the scaled profiles are attributed to the mismatch of the parts of the layer (i.e. inner or outer) and the scaling parameters, their behaviours can also be explained by introducing a non-dimensional parameter which consists of the ratio of the inner- and outer-layer parameters for length (the boundary-layer height over the roughness length), or velocity (the external free stream velocity over the friction velocity).
著者
Shuhei Matsugishi Hiroaki Miura Tomoe Nasuno Masaki Satoh
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.16A-003, (Released:2020-05-21)
被引用文献数
6

We show that a modification to the latent heat flux (LHF) formulation in Non-hydrostatic Icosahedral Atmospheric Model (NICAM) impacts the representation of a Madden–Julian oscillation (MJO) event during the Pre-Years of the Maritime Continent (Pre-YMC) field campaign in 2015. First, we compare the LHFs computed by the standard NICAM setting with those estimated from the ship observation during Pre-YMC. In this comparison, the NICAM LHF is smaller than observation in the low wind speed region and larger in the high wind speed region. Consequently, the MJO signal weakens when it passes over the Maritime Continent (MC). Next, sensitivity experiments are conducted with a modification to the threshold minimum wind speed in the bulk formula, to enhance the LHFs in the low wind speed region. With this modification, propagation of the MJO is better simulated over the MC, although a bias still remains without corrections in the high wind speed regions. This result indicates that increasing the LHF in the low wind speed region likely contributes to a more effective accumulation of moisture over the eastern MC region and consequently allows the MJO to pass over the MC in the model.
著者
Hsiang-Wen Cheng Shu-Chih Yang Yu-Ching Liou Ching-Sen Chen
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-017, (Released:2020-05-12)
被引用文献数
2

This study investigates the forecast sensitivity of an afternoon thunderstorm in northern Taiwan to the upstream condition associated with the prevailing warm and moist southwesterly winds on 16 June 2008. This event was initiated near noon and lasted for several hours with a maximum hourly precipitation rate of 69 mm hr−1 at 14 LST.Experiments are conducted to assimilate radial velocity only or both radial velocity and reflectivity data from radars at southwestern and southern Taiwan with the WRF-Local Ensemble Transform Kalman Filter Radar assimilation system. Results show that these experiments can predict the rainfall occurrence in northern Taiwan, but the location and rainfall amount is very sensitive to upstream environmental conditions. Assimilating the unfiltered topography-associated reflectivity noise upstream generates unrealistic light rain and cooling, which leads to a great reduction of rainfall in the target area. The precipitation prediction suggests that a careful topography-based quality control performed on the radar data can be essential to restore the necessary environmental conditions for forecasting the afternoon thunderstorm event.
著者
Sachie Kanada Kazuhisa Tsuboki Izuru Takayabu
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.57-63, 2020 (Released:2020-04-09)
参考文献数
31
被引用文献数
9

To understand the impacts of global warming on tropical cyclones (TCs) in midlatitude regions, dynamical downscaling experiments were performed using a 4-km-mesh regional model with a one-dimensional slab ocean model. Around 100 downscaling experiments for midlatitude TCs that traveled over the sea east of Japan were forced by large-ensemble climate change simulations of both current and warming climates. Mean central pressure and radius of maximum wind speed of simulated current-climate TCs increased as the TCs moved northward into a baroclinic environment with decreasing sea surface temperature (SST). In the warming-climate simulations, the mean central pressure of TCs in the analysis regions decreased from 958 hPa to 948 hPa: 12% of the warming-climate TCs were of an unusual central pressure lower than 925 hPa. In the warming climate, atmospheric conditions were strongly stabilized, however, the warming-climate TCs could develope, because the storms developed taller and stronger eyewall updrafts owing to higher SSTs and larger amounts of near-surface water vapor. When mean SST and near-surface water vapor were significantly higher and baroclinicity was significantly smaller, unusual intense TCs with extreme wind speeds and large amounts of precipitation around a small eye, could develop in midlatitude regions, retaining the axisymetric TC structures.
著者
Sachie Kanada Kazuhisa Tsuboki Izuru Takayabu
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-010, (Released:2020-03-03)
被引用文献数
9

To understand the impacts of global warming on tropical cyclones (TCs) in midlatitude regions, dynamical downscaling experiments were performed using a 4-km-mesh regional model with a one-dimensional slab ocean model. Around 100 downscaling experiments for midlatitude TCs that traveled over the sea east of Japan were forced by large-ensemble climate change simulations of both current and warming climates. Mean central pressure and radius of maximum wind speed of simulated current-climate TCs increased as the TCs moved northward into a baroclinic environment with decreasing sea surface temperature (SST). In the warming-climate simulations, the mean central pressure of TCs in the analysis regions decreased from 958 hPa to 948 hPa: 12% of the warming-climate TCs were of an unusual central pressure lower than 925 hPa. In the warming climate, atmospheric conditions were strongly stabilized, however, the warming-climate TCs could develope, because the storms developed taller and stronger eyewall updrafts owing to higher SSTs and larger amounts of near-surface water vapor. When mean SST and near-surface water vapor were significantly higher and baroclinicity was significantly smaller, unusual intense TCs with extreme wind speeds and large amounts of precipitation around a small eye, could develop in midlatitude regions, retaining the axisymetric TC structures.
著者
Haruka Okui Kaoru Sato
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-011, (Released:2020-03-13)
被引用文献数
1

Using long-term high-resolution operational radiosonde observation data from nine stations in the subtropics and mid-latitudes of Japan, this study performed statistical analysis of the dynamical characteristics of gravity waves (GWs). Wave generation by shear instability in summer was a particular focus because orographic GWs cannot propagate deep into the middle atmosphere through their critical layer in the lower stratosphere. The kinetic energy of summer stratospheric GWs is markedly large south of 37°N. Hodograph analysis revealed that GWs propagating eastward relative to the ground are dominant in summer. The percentage of GWs propagating energy upward (downward) is large above (below) the height at which the mean occurrence frequency of shear instability is high. The time series of the kinetic energy of stratospheric GWs exhibited statistically significant positive correlation with the occurrence frequency of shear instability slightly below the tropopause. These findings strongly suggest the possibility of excitation of summer stratospheric GWs by shear instability above the jet. The shear instability condition is satisfied more frequently in the region 30°-35°N. This is probably related to two characteristics of the background fields slightly below the tropopause: larger vertical shear of zonal winds at higher latitudes and lower static stability at lower latitudes.
著者
Akihiro Hashimoto Hiroki Motoyoshi Narihiro Orikasa Ryohei Misumi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-009, (Released:2020-03-02)

We have developed a new method of diagnosing the characteristics of ice particles using a bulk microphysics model. Our model tracked the mass compositions of different classes of ice particles, using their microphysical process of origin, such as water vapor deposition and riming. The mass composition from depositional growth was further divided into six components by the temperature and humidity ranges corresponding to the typical growth habits of ice crystals. In test simulations, the new framework successfully revealed the influences of riming and depositional growths of ice particles within clouds and on surface snowfall. The new approach enables weather prediction models to provide much more information on the characteristics of ice particles regarding crystal habits and the extent of riming.
著者
Shiori Sugimoto
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.16, pp.17-22, 2020 (Released:2020-02-13)
参考文献数
29
被引用文献数
12

Heavy precipitation frequently occurs over Kyushu, southwestern Japan, during the Baiu season, and abundant moisture transport is a key driving factor. To statistically understand the intensification of moisture transport to Kyushu during the Baiu season, synoptic-scale atmospheric conditions are examined using a composite analysis of reanalysis data. A heavy precipitation day is defined as a day with area-averaged daily precipitation over Kyushu that is larger than 1.0 mm and ranked in top 10% during May 31 to July 19 from 1981 to 2015. During such heavy precipitation days, the precipitation observed over Kyushu exceeds 100 mm day−1. For several days before the occurrence of heavy precipitation over Kyushu, a plateau-scale disturbance develops over the Tibetan Plateau associated with daytime surface heating, and is characterized by cloud convection formation and eastward extension. During the eastward extension, latent heating from the cloud and upper-level high potential vorticity maintains the disturbance. The disturbance reaches northwest Kyushu on the heavy precipitation day, and a pair of positive and negative anomalies of relative vorticity over northwestern and southeastern Kyushu intensify the anomalous moisture transport.
著者
Shiori Sugimoto
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-004, (Released:2020-01-03)
被引用文献数
12

Heavy precipitation frequently occurs over Kyushu, southwestern Japan, during the Baiu season, and abundant moisture transport is a key driving factor. To statistically understand the intensification of moisture transport to Kyushu during the Baiu season, synoptic-scale atmospheric conditions are examined using a composite analysis of reanalysis data. A heavy precipitation day is defined as a day with area-averaged daily precipitation over Kyushu that is larger than 1.0 mm and ranked in top 10% during May 31 to July 19 from 1981 to 2015. During such heavy precipitation days, the precipitation observed over Kyushu exceeds 100 mm day−1. For several days before the occurrence of heavy precipitation over Kyushu, a plateau-scale disturbance develops over the Tibetan Plateau associated with daytime surface heating, and is characterized by cloud convection formation and eastward extension. During the eastward extension, latent heating from the cloud and upper-level high potential vorticity maintains the disturbance. The disturbance reaches northwest Kyushu on the heavy precipitation day, and a pair of positive and negative anomalies of relative vorticity over northwestern and southeastern Kyushu intensify the anomalous moisture transport.
著者
Masahrio Shiozaki Takeshi Enomoto
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2020-003, (Released:2019-12-30)
被引用文献数
1

The 2015/16 El Niño is compared with the two previous strongest events, the 1982/83 and 1997/98 El Niño. The 2015/16 winter features a basin warming in the Indian Ocean, a negative sea surface temperature (SST) anomaly shifted to the north in the western Pacific Ocean in addition to a positive SST anomaly shifted to the west in the eastern Pacific Ocean. These SST distributions lead to suppressed convection in the Maritime Continent, and to a weakened Hadley circulation in the western Pacific Ocean. The eastern Asian monsoon in the 2015/16 winter was also weakened due to the dominance of the western Pacific (WP) pattern. On the other hand, the third and fourth centers of action of Pacific/North American (PNA) pattern in the 2015/16 case are obscure. This may be due to weak divergence in the eastern Pacific Ocean.
著者
Sachie Kanada Hidenori Aiki Kazuhisa Tsuboki Izuru Takayabu
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.244-249, 2019 (Released:2019-12-05)
参考文献数
36
被引用文献数
8

From 16 to 23 August 2016, typhoons T1607, T1609, and T1611 hit eastern Hokkaido in northern Japan and caused heavy rainfall that resulted in severe disasters. To understand future changes in typhoon-related precipitation (TRP) in midlatitude regions, climate change experiments on these three typhoons were conducted using a high-resolution three-dimensional atmosphere–ocean coupled regional model in current and pseudo-global warming (PGW) climates. All PGW simulations projected decreases in precipitation frequency with an increased frequency of strong TRP and decreased frequency of weak TRP in eastern Hokkaido. In the current climate, snow-dominant precipitation systems start to cause precipitation in eastern Hokkaido about 24 hours before landfall. In the PGW climate, increases in convective available potential energy (CAPE) developed tall and intense updrafts and the snow-dominant precipitation systems turned to have more convective property with less snow mixing ratio (QS). Decreased QS reduced precipitation area, although strong precipitation increased or remained almost the same. Only TRP of T1607 increased the amounts before landfall. In contrast, all typhoons projected to increase TRP amount associated with landfall, because in addition to increased CAPE, the PGW typhoon and thereby its circulations intensified, and a large amount of rain was produced in the core region.
著者
Kazuaki Yasunaga Atsushi Hamada Kazuaki Nishii
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2019-043, (Released:2019-11-06)
被引用文献数
2

This study examines the factors responsible for the long-term changes of winter monsoonal flow around Japan in association with increasing precipitation trends in December along the coastal areas of Honhsu (the main island of Japan) facing the Sea of Japan. The precipitation around the tropical eastern Indian Ocean and maritime continent has significantly increased in recent years. Thus, a wave-packet of the stationary Rossby wave associated with the anomalous heating deflects the subtropical jet to the south over the eastern edge of the Eurasian continent. The deflection of the jet gives favorable conditions for the development of a low pressure trough in the lower level on the eastern side, leading to the formation of negative height anomalies near the surface around Japan.Although tropical precipitation also increases in November and January, the anomalous heating induces negative height anomalies and cyclonic circulations over the inland region of China and eastern offshore region of Japan (to the further west and east in comparison with those in December) in these months. As a result, monsoonal flow around Japan (and precipitation along the coastal areas of the Sea of Japan) shows no long-term trends in November or January.
著者
Kenji Suzuki Rimpei Kamamoto Katsuhiro Nakagawa Michinobu Nonaka Taro Shinoda Tadayasu Ohigashi Yukiya Minami Mamoru Kubo Yuki Kaneko
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.94-98, 2019 (Released:2019-05-14)
参考文献数
21
被引用文献数
5

A field observation was carried out along the coast of the Japan Sea in the 2016-2017 and 2017-2018 winter seasons, using the Ground-based Particle Image and Mass Measurement System (G-PIMMS) to evaluate the Global Precipitation Measurement Mission (GPM) dual-frequency precipitation radar (DPR) precipitation type classification algorithm. The G-PIMMS was installed at Kanazawa University and Ishikawa Prefectural University, which are around 10 km apart from each other. The G-PIMMS observations showed that the major precipitation particle type (graupel or snowflake) was different in the precipitation types classified by the GPM DPR algorithm.
著者
Han Lin Feng Zhang Kun Wu Jing Xu
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.87-93, 2019 (Released:2019-05-14)
参考文献数
35
被引用文献数
5

Five δ-two-stream and δ-four-stream schemes are compared in solar spectra using the Rapid Radiative Transfer Model for General Circulation Models Applications (RRTMG). By calculating the flux and heating rate in various atmosphere, it is found that, in accuracy, the δ-four-stream schemes overwhelmingly outperform the δ-two-stream schemes. The precision of adding algorithm of the δ-four-stream spherical harmonic expansion (δ-4SDA) is comparable to that of adding algorithm of the δ-four-stream discrete ordinates method (δ-4DDA). Furthermore, the accuracy of the adding algorithm of δ-Eddington approximation (δ-2SDA) is close to that of δ-two-stream approximation with Practical Improved Flux Method (δ-PIFM), while adding algorithm of δ-two-stream discrete ordinates method (δ-2DDA) produces the poorest results among the five approximate schemes. For the RRTMG model with radiative transfer calculation, the computational time of δ-4SDA is about 1.5 times that of δ-two-stream schemes, and the computational time of δ-4SDA is about 88% that of δ-4DDA.
著者
Akihiko Shimpo Kazuto Takemura Shunya Wakamatsu Hiroki Togawa Yasushi Mochizuki Motoaki Takekawa Shotaro Tanaka Kazuya Yamashita Shuhei Maeda Ryuta Kurora Hirokazu Murai Naoko Kitabatake Hiroshige Tsuguti Hitoshi Mukougawa Toshiki Iwasaki Ryuichi Kawamura Masahide Kimoto Izuru Takayabu Yukari N. Takayabu Youichi Tanimoto Toshihiko Hirooka Yukio Masumoto Masahiro Watanabe Kazuhisa Tsuboki Hisashi Nakamura
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.15A-003, (Released:2019-05-17)
被引用文献数
80

An extreme rainfall event occurred over western Japan and the adjacent Tokai region mainly in early July, named “the Heavy Rain Event of July 2018”, which caused widespread havoc. It was followed by heat wave that persisted in many regions over Japan in setting the highest temperature on record since 1946 over eastern Japan as the July and summertime means. The rain event was attributable to two extremely moist airflows of tropical origins confluent persistently into western Japan and large-scale ascent along the stationary Baiu front. The heat wave was attributable to the enhanced surface North Pacific Subtropical High and upper-tropospheric Tibetan High, with a prominent barotropic anticyclonic anomaly around the Korean Peninsula. The consecutive occurrence of these extreme events was related to persistent meandering of the upper-level subtropical jet, indicating remote influence from the upstream. The heat wave can also be influenced by enhanced summertime convective activity around the Philippines and possibly by extremely anomalous warmth over the Northern Hemisphere midlatitude in July 2018. The global warming can also influence not only the heat wave but also the rain event, consistent with a long-term increasing trend in intensity of extreme precipitation observed over Japan.
著者
Kengo Arai Kazuaki Yasunaga
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2019-016, (Released:2019-03-26)
被引用文献数
1

This study examines dominant precipitation patterns during winter in the north-central region (Hokuriku District) of Japan, based on empirical orthogonal functions (EOFs) analysis. The pattern of the first leading component is similar to that of the mean precipitation, and the second leading component shows a dipole structure in which positive and negative regions are separated by the coast line. This dipole pattern across the coast line is robust regardless of data stratifications for the EOF calculation. Composites reveal that maritime and inland precipitation is relatively enhanced before and after the passage of a mid-level trough, respectively. In the former case, the temperature is higher and westerly or southwesterly wind prevails, while northwesterly wind dominates in the latter case. It is suggested that interactions between cold air over the land and warm air over the ocean are essentially important to the distinct precipitation patterns; offshore winds wedge the inland cold air under the maritime warm air, and intensifies the precipitation over the ocean. On the other hand, the northwesterly monsoonal flow pushes the maritime warm air onto the inland cold air, and more precipitation is brought about around the mountain range.
著者
Feng Zhang Hang Ren Lijuan Miao Yadong Lei Mingkeng Duan
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.68-74, 2019 (Released:2019-03-27)
参考文献数
33
被引用文献数
6

As the earth's third pole, Qinghai-Tibet Plateau belongs to one of the most sensitive regions to climate change in the world. Based on the observed and the simulated daily precipitation from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we evaluated the simulation performance of daily precipitation from selected CMIP5 models from 1975 to 2005 over the Qinghai-Tibet Plateau. We found that daily precipitation exhibited obvious long-range correlation characteristics using the detrended fluctuation analysis method. The scaling exponents of daily precipitation in summer and autumn are significantly larger than those in spring and winter. MIROC4H with the best performance can reproduce long-range correlation characteristic of daily precipitation series probably because of the higher resolution, which can capture small scale cloud convections. Besides there are seasonal differences in the simulation results among different regions of the Qinghai-Tibet Plateau, simulation effects of all climate models in summer and winter are better than those in spring and autumn. The performance of MIROC4H model works the best in spring. Overall, the scaling exponents of daily precipitation from BCC-CSM1-1-M, CMCC-CM and MIROC4H are close to the observations. CCSM4 and MIROC4H climate models could reproduce the internal dynamics characteristic of daily precipitation in autumn. But for winter, all climate models have exaggerated the scaling value in southeastern Qinghai-Tibet Plateau compared with the observed values.
著者
Koji Terasaki Shunji Kotsuki Takemasa Miyoshi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.2019-009, (Released:2019-01-31)
被引用文献数
7

This study investigates the long-term stability of the global atmospheric data assimilation system, incorporating the Local Ensemble Transform Kalman Filter (LETKF) with the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The NICAM-LETKF system assimilates conventional observations, advanced microwave sounding unit–A (AMSU-A) radiances, and global satellite mapping of precipitation (GSMaP) data. The long-term stability of the data assimilation system can be investigated only by running an expensive long-term experiment. This study successfully performed a data assimilation experiment with more than 2 years of data, using the relaxation to prior spread (RTPS) method for covariance inflation. Analysis fields indicate a stable physical performance compared with the ERA-interim data for the entire experimental period.
著者
Shogo Sakai Hironobu Iwabuchi Feng Zhang
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.57-61, 2019 (Released:2019-03-16)
参考文献数
16
被引用文献数
1

We have developed a rapid simplified algorithm to retrieve cloud optical thickness and cloud-top height from measurements of the infrared split-window bands of Himawari-8. The method is based on a rapid calculation model for clear-sky brightness temperatures and empirical equations for cloud, for which the coefficients are determined by a fit to a more rigorous radiative-transfer model. This method can be applied regardless of regions excluding the polar regions and season by taking into account the temperature, humidity, sea surface temperature, and surface emissivity. In this study, we have demonstrated that this method captures well the diurnal cycle of cloud amounts of different cloud types in the warm-pool region around Indonesia. With an accelerated retrieval process by a factor of around 1,000 compared with the the physics-based retrieval, our rapid cloud retrieval algorithm yielded cloud amounts that agree quantitatively with those from a more rigorous, physics-based cloud retrieval method.
著者
Kei Kawai Yuta Nishio Kenji Kai Jun Noda Erdenebadrakh Munkhjargal Masato Shinoda Nobuo Sugimoto Atsushi Shimizu Enkhbaatar Davaanyam Dashdondog Batdorj
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15, pp.52-56, 2019 (Released:2019-03-07)
参考文献数
21
被引用文献数
4

Asian dust is transported over a long range via the mid-latitude westerlies when dust is lifted to the free troposphere over the source regions, whereas dust remaining in the atmospheric boundary layer is not transported far. In the Gobi Desert, a major source region of Asian dust, a ceilometer (compact lidar) monitors the vertical distribution of dust at Dalanzadgad, Mongolia. On 29-30 April 2015, the ceilometer observed a developed dust storm over the ground, followed by a dust layer within a height of 1.2-1.8 km. The dust storm had already developed in the upwind region before reaching Dalanzadgad. This feature was also shown in the ceilometer observation data. The dust layer remained at almost the same height for 12 h, because the dust became trapped within an inversion layer at a height of 1.2-1.5 km over cold air. This result suggests that the inversion layer prevented the dust from reaching the free troposphere, thereby restraining the long-range transport of the dust via the westerlies. This is the first paper that reports this type of vertical distribution of dust in the source region based on observation data.