著者
長山 格 上原 和加貴 城間 康 宮里 太也
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌D(産業応用部門誌) (ISSN:09136339)
巻号頁・発行日
vol.141, no.2, pp.130-137, 2021

<p>In this study, we aim to develop a robust motion recognition system for an intelligent video surveillance system, that can be used for security, sports and rehabilitation by using extended alternative learning. A robust motion recognition system is necessary for the automated detection of security incidents by using a machine learning approach. However, to avoid the difficulty of collecting a huge training dataset, we propose an alternative learning approach that trains a deep neural network with a 3D-CG dataset to recognize several motions. We present our experimental results on motion recognition from free-viewpoint videos by using deep learning and alternative learning. The trained deep neural network (DNN) is evaluated using actual videos by classifying the different actions performed by real humans in these videos.</p>
著者
長山 格 岩永 竜也 上原 和加貴 宮里 太也
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌D(産業応用部門誌) (ISSN:09136339)
巻号頁・発行日
vol.141, no.2, pp.138-146, 2021

<p>This paper presents the development of a new method for the estimation and resolution of body occlusion using deep learning for an advanced intelligent video surveillance system. A generative adversarial network is used to estimate and reconstruct an image of a hidden part of the human body. Furthermore, an alternative learning approach using 3DCG that was developed in our previous study is adopted to create a large dataset for deep learning. Experimental results indicate that the proposed method performs well in the estimation of hidden parts of the human body using images of actual people.</p>
著者
宮里 太也 上原 和加貴 長山 格
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌C(電子・情報・システム部門誌) (ISSN:03854221)
巻号頁・発行日
vol.139, no.9, pp.972-979, 2019

<p>This paper describes the development of 3-D human recognition system of flying drone system for emergency rescue and investigation. In this system, deep neural network and its application for 3-D object recognition are key techniques for human detection from a free viewpoint. Some appearance based characteristics are captured as movie frames, and the system uses deep neural networks to automatically classify concerned object. The proposed system performs well that many kinds of views of personnels can be recognized from bird's-eye view. Experimental results show that the system can effectively recognize human objects with high accuracy.</p>
著者
長山 格 上原 和加貴 宮里 太也
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌C(電子・情報・システム部門誌) (ISSN:03854221)
巻号頁・発行日
vol.139, no.9, pp.964-971, 2019
被引用文献数
1

<p>An alternative learning and its application to construct a robust object recognition system for intelligent security camera(RORSIS) is presented in this paper. We show some experimental results of the development of the new robust 3-D object recognition system for intelligent security camera. In this system, a deep neural network and alternative learning using 3-D CG are key techniques for object recognition from a free viewpoint. Alternative learning is effective approach for the machine learning that depends on huge amount of tarining data. Some appearance based characteristics are determined from captured images, and the system uses a deep neural network, called AlexNet, to automatically classify bicycle, automobile and so on. The proposed system shows that several kinds of equipments can be recognized from a free view point. Experimental results show that the system can effectively recognize four kinds of real objects with 99.5% accuracy.</p>
著者
長山 格 上原 和加貴 宮里 大也
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌. D, 産業応用部門誌 (ISSN:09136339)
巻号頁・発行日
vol.139, no.2, pp.149-157, 2019

<p>An alternative learning and its application to construct an overviewing human detection system (OHDES-V2) of flying drone for emergency rescue and investigation is presented in this paper. In this system, a deep neural network and alternative learning are used key techniques for object recognition from a free viewpoint. Simple appearance-based characteristics is determined from captured images, and the system uses a deep neural network to automatically classify human body, automobiles and so forth. The proposed system shows that several objects can be recognized from a bird's-eye view. Experimental results show that the system can effectively recognize four types of objects and walking persons with accuraces of 98.5% and 97.12%, respectively.</p>
著者
鈴木 康夫 井城 祥光 上原 和浩 川口 英治 中嶋 信生 濱井 龍明 原田 博司 藤井 輝也 横井 時彦 横山 幸男 日高 良一 小田 浩司
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. SR, ソフトウェア無線 (ISSN:09135685)
巻号頁・発行日
vol.105, no.217, pp.109-116, 2005-07-21
参考文献数
9

フィールドでのソフトウェア交換が可能になる将来を想定して、ソフトウェア無線機の開発、証明、流通、インストール関するシミュレーションシステムを製作し、検証実験を行った。
著者
赤嶺 有平 遠藤 聡志 上原 和樹 根路銘 もえ子
雑誌
情報処理学会論文誌 (ISSN:18827764)
巻号頁・発行日
vol.55, no.1, pp.438-447, 2014-01-15

交通渋滞は,経済損失を発生させるだけでなく環境へ悪影響も与えるため,その解決が強く求められている.一方,スマートフォン等の普及により位置情報の取得と通信による情報共有が安価に実現できるようになっており,得られた交通情報を活用した渋滞解消策が望まれる.本論文は,プローブカー等により所要時間のリアルタイムデータの推定や過去の蓄積データが利用可能な状況下において,適切な出発時刻および経路をユーザに提示することで,時間・空間的に交通量を分散する手法を提案する.さらに,パーソントリップ調査に基づく実データを用いたシミュレーション実験によりその効果を検証する.Traffic congestion is a major problem in many modern cities because it causes large economic losses and negatively affects to the city environment. In the meantime, traffic information has been easily collectable in real time with popularization of mobile devices that are able to communicate and localize itself. A solution using the traffic information is desired. In this paper, we propose a method to spread traffic demand temporally with indication of appropriate departure time and route for user under the situation that hourly trip time is available in real time by probe cars. In addition, we prove the efficiency of the method by the traffic simulation using actual data of person trip census.