著者
片山 直美 山下 雅道 和田 秀徳 三橋 淳 Space Agriculture Task Force
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.20, no.2, pp.48-56, 2006 (Released:2007-04-13)
参考文献数
17

Concept of space agriculture is developed for habitation on Mars. Space diet is designed and evaluated with nutritional point of view. Combination of rice, soybean, sweet potato, green-yellow vegetable (represented by Komatsuna), silkworm pupa, and loach was found to fill the nutritional requirements.
著者
山下 雅道 馬場 昭次
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.18, no.1, pp.13-27, 2004 (Released:2005-12-20)
参考文献数
40
被引用文献数
1

Gravity is a force that acts on mass. Biological effects of gravity and their magnitude depend on scale of mass and difference in density. One significant contribution of space biology is confirmation of direct action of gravity even at the cellular level. Since cell is the elementary unit of life, existence of primary effects of gravity on cells leads to establish the firm basis of gravitational biology. However, gravity is not limited to produce its biological effects on molecules and their reaction networks that compose living cells. Biological system has hierarchical structure with layers of organism, group, and ecological system, which emerge from the system one layer down. Influence of gravity is higher at larger mass. In addition to this, actions of gravity in each layer are caused by process and mechanism that is subjected and different in each layer of the hierarchy. Because of this feature, summing up gravitational action on cells does not explain gravity for biological system at upper layers. Gravity at ecological system or organismal level can not reduced to cellular mechanism. Size of cells and organisms is one of fundamental characters of them and a determinant in their design of form and function. Size closely relates to other physical quantities, such as mass, volume, and surface area. Gravity produces weight of mass. Organisms are required to equip components to support weight and to resist against force that arise at movement of body or a part of it. Volume and surface area associate with mass and heat transport process at body. Gravity dominates those processes by inducing natural convection around organisms. This review covers various elements and process, with which gravity make influence on living systems, chosen on the basis of biology of size. Cells and biochemical networks are under the control of organism to integrate a consolidated form. How cells adjust metabolic rate to meet to the size of the composed organism, whether is gravity responsible for this feature, are subject we discuss in this article. Three major topics in gravitational and space biology are; how living systems have been adapted to terrestrial gravity and evolved, how living systems respond to exotic gravitational environment, and whether living systems could respond and adapt to microgravity. Biology of size can contribute to find a way to answer these question, and answer why gravity is important in biology, at explaining why gravity has been a dominant factor through the evolutional history on the earth.
著者
In-Ho Choi 山下 雅道
出版者
一般社団法人 日本航空宇宙学会
雑誌
日本航空宇宙学会誌 (ISSN:00214663)
巻号頁・発行日
vol.47, no.551, pp.287-294, 1999-12-05 (Released:2019-04-09)
参考文献数
37
被引用文献数
1
著者
山下 雅道 内藤 富夫 Wassersug Richard J.
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.16, no.4, pp.245-270, 2002 (Released:2006-01-31)
参考文献数
94
被引用文献数
1 1

We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians.
著者
山岸 明彦 矢野 創 小林 憲正 横堀 伸一 橋本 博文 山下 雅道 田端 誠 河合 秀幸
出版者
生命の起原および進化学会
雑誌
Viva Origino (ISSN:09104003)
巻号頁・発行日
vol.36, no.4, pp.72-76, 2008 (Released:2022-01-18)
参考文献数
23

たんぽぽ(蒲公英,dandelion)は綿毛のついた種子を風に乗せて頒布し,その生息域を広げる多年草である.我々は,この名前のもと,国際宇宙ステーション-JEM(日本実験棟)上での微生物と生命材料となり得る有機化合物の天体間の移動の可能性の検討と微小隕石の検出および解析実験を提案する.我々は,超低密度エアロゲルを用いることで,微小隕石やその他の微粒子を捕集することが可能であると考えている.低軌道上で超低密度エアロゲルを一定期間曝露することで宇宙空間で微粒子を捕集する.エアロゲル表面と衝突トラックの顕微観察の後,エアロゲルの様々な解析を行う.衝突トラックの詳細な検討により,国際宇宙ステーション周辺のデブリのサイズと速度が明らかにできると期待される.エアロゲル中に残存した粒子に関して,鉱物学的,有機化学的,及び微生物学的な検討を行う.一方,宇宙環境下での微生物の生存可能性について検討するため,微生物を直接宇宙空間に曝露する実験も行う.同様に,宇宙環境下での有機化合物の変性の可能性を検討するため,有機化合物の宇宙空間への直接曝露実験も行う.これらの実験を行うための装置はすべて受動的な装置であり,そのための装置の基本構造,装置回収後の解析法も,既に確立されている.
著者
井尻 憲一 江口 星雄 黒谷 明美 山下 雅道 長岡 俊治 Ijiri Kenichi Eguchi Hoshio Kurotani Akemi Izumi Yamashita Masamichi Nagaoka Shunji
出版者
宇宙開発事業団
雑誌
宇宙開発事業団技術報告 = NASDA Technical Memorandum (ISSN:13457888)
巻号頁・発行日
pp.46-60, 1997-01-31

メダカ(ヒメダカ:成魚)およびイモリ(アカハライモリ:成体雌)の行動および姿勢をパラボリックフライト中の微小重力下で観察した。結果および考察は以下の通りである。メダカ:純系HO5および雑系の成魚は暗視条件下では両方とも輪を描く回転運動を示した。しかし、明視条件下ではHO5系は輪を描く回転運動を示したが、雑系は示さなかった。他の純系HB32Cはどちらの場合も回転運動を示さなかった。このように、微小重力に対する成魚メダカの行動上の反応には系による違いが存在した。イモリ:水中のイモリはゆっくりとした回転、うねりを示しながら泳いだ。空気中では、ほとんどのイモリが微小重力下においても水槽の底面にとどまっていた。何匹かのイモリは無重力時に浮かび上がってきた。それらは前肢を体側に沿わせたまま、空気中を体をうねらせて泳いだ。AAEU(水棲動物実験装置)カセット中のイモリは、AAEUカセットの厚さが成体イモリの身体の幅くらいしかないため、水中でも空気中でもカセットの表面に張り付いていた。イモリは、宇宙空間のAAEUカセットの中で産卵中でも姿勢を保ち続けることができると考えられる。MU-300型航空機からの機械的振動が実験ラックに伝わった。メダカ・イモリの行動に及ぼす影響を評価するため、振幅および周波数スペクトル解析するように振動を記録した。
著者
山下 雅道 山下 明子 山田 晃弘
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.11, no.2, pp.112-118, 1997 (Released:2006-02-01)
参考文献数
19
被引用文献数
16 17

Three dimensional clinostat has been developed for simulation of microgravity on ground. It has applied in many disciplines in gravitational biology. Outline of operational principle is described together with its mechanical design. Rotation around two independent axes makes direction of gravity vector to scan whole steric angle. Magnitude and direction of rotational angular velocity is selected randomly at a certain interval of time to avoid singularity in sweep trajectory of gravity vector. Methods for validation of the operation are presented to test randomness of motion and cancellation of gravity by clino-rotation. Concerns discussed are vibration originated in motor and pseudo-weak magnetic field generated on clinostat. Fluid flow induced by clino-rotation is pointed as another problem to be taken into account.
著者
緒方 雄一朗 薮田 ひかる 中嶋 悟 奥平 恭子 森脇 太郎 池本 夕佳 長谷川 直 田端 誠 横堀 伸一 今井 栄一 橋本 博文 三田 肇 小林 憲正 矢野 創 山下 雅道 山岸 明彦 たんぽぽ ワーキンググループ
出版者
日本地球化学会
雑誌
日本地球化学会年会要旨集
巻号頁・発行日
vol.58, pp.175-175, 2011

始原小天体有機物は、太陽系および生命原材料物質の起源と進化を理解するための重要な情報を記録している。「たんぽぽ計画」では、大気圏突入時の熱変成や地上での汚染を受けていない宇宙塵を、国際宇宙ステーション上に超低密度シリカエアロゲルを設置して回収を試みる予定である。しかし、この方法では、宇宙塵のエアロゲルへの衝突により変成する可能性を考慮する必要がある。そこで本研究では、宇宙科学研究所・スペースプラズマ実験施設の二段式高速ガス銃を用いて、隕石微粒子の高速衝突模擬実験を行い、マーチソン隕石微粒子をシリカエアロゲルに撃ち込んだものを取り出し、2枚のアルミ板にはさみハンドプレスして圧着された隕石微粒子を、片方のアルミ板に載せた状態で、赤外顕微分光装置と顕微ラマン分光装置で測定を行った。また、SPring-8, BL43IRの高輝度赤外顕微分光装置IFS120HRでイメージング測定を行い、衝突前後の隕石有機物の分子構造の変化を見出すことを目的とした。