著者
向井 茂 中山 昇 橋本 光靖 金銅 誠之 齋藤 政彦 藤野 修 行者 明彦 浪川 幸彦 梅村 浩 寺西 鎮男 齊藤 博
出版者
京都大学
雑誌
基盤研究(A)
巻号頁・発行日
1998

1)幾何学的不変式論を再構成した。また、曲線状のベクトル束のモジュライ空間をQuotスキームというものを使わずに構成した。両者相まってベクトル束のモジュライ理論は大幅に簡易化され見通しよくなった。多くの発展がこの基礎付けのもとになされると期待する。(例えば、Jacobi多様体の退化)2)放物や安定対のような構造付きベクトル束のモジュライも上と同じように構成が見通しよくなった。おかげで共形ブロックの個数に関するVerlinde公式を不変式環のHilbert級数の明示と捉えることができるようになった。この公式の周辺に集まる多くの数学(アフィンLie環、Hecke環や量子群など)を不変式の観点から純代数的に理解できるようになると期待している。。3)穴あきRiemann球(=点付き射影直線)上の構造付きベクトル束のモジュライのmaster spaceは2次元加法群の多項式環への平方零作用の不変式環をその座標環としてもつ。このことより、この環の有限生成性が従う。これと下の成果を合わせて加法群の平方零作用に対するHilbertの第14問題を解決した。(2002年3月学会で報告)4)永田の反例を改良することによって3次元加法群の18変数多項式環への平方零作用の不変式環で無限生成なものを構成した。この環と、5次元射影空間を9点で爆発したものの全座標環との間の同型(永田トリック)が重要であるが、これの新証明も与えた。5)二つのK3曲面の直積上のある種のHodgeサイクルの代数性(Shafarevich予想)に対して新しい証明を見つけた。6)偏極Abel曲面に対して2重レヴェルを考案し、それ付きのモジュライを研究した。(1,d)型でdが5以下のときは正多面体群を使って綺麗な多様体になる。今後は次元公式を計算し、保型形式環を研究すべきと考えている。
著者
加藤 信一 高崎 金久 斎藤 裕 松木 敏彦 西山 享 行者 明彦
出版者
京都大学
雑誌
一般研究(C)
巻号頁・発行日
1992

本研究は、代数群、リー代数またはそれに関連する対称空間、概均質ベクトル空間やヘッケ環等の上で定義される様々な特殊関数を主に表現論の立場から研究したものであり、整数論、数理物理学等と関連した多くの成果が得られた。加藤はヘッケ環の表現を調べ、その「双対」がどの様に与えられるかを決定した。また、数理物理学にあらわれるR行列の新しい例をヘッケ環を用いて与え、これを使って可積分系のq類似である量子化されたクニズニク=ザモロヂコフ方程式を考察、この方程式とマクドナルド差分作用素の関係を明らかにした。斎藤は対称行列のなす概均質ベクトル空間の数論的研究を行い、そのゼータ関数を具体的に決定した。そしてそれらのジーゲル保型形式の研究への応用等を論じた。行者は概均質ベクトル空間の研究を表現論、D加群の理論と関連して研究した。特に一般化されたヴァーマ加群の既約性と概均質ベクトル空間のb関数の関係を調べ、代数群、リー代数の無限次元表現論の研究において概均質ベクトル空間の理論が有効に適用できることを示した。松木は表現の記述に必要な、代数群の旗多様対の対称空間に関連する軌道分解について研究し、また球部分群についても考察した。西山はリー超代数のユニタリー表現論を研究した。特にハウによる双対対の理論の超代数版を用いて、各種の古典的リー超代数の既約ユニタリー表現をフォック空間上に実現して、その性質を調べた。高崎は数理物理学にあらわれる微分方程式、非線型可積分系を研究した。特にそれら方程式、可積分系の対称性を考察の対象として、体積保存微分同型群、無限次元リー代数等との関わりを調べた。
著者
柏原 正樹 西山 亨 行者 明彦 三輪 哲二 岡田 聡一 黒木 玄 寺田 至 小池 和彦 山田 裕史 谷崎 俊之 中島 俊樹 中屋敷 厚 織田 孝幸
出版者
京都大学
雑誌
基盤研究(A)
巻号頁・発行日
1997

この科研費による計画においては、リー群・量子群・へッケ環などの表現論を数理物理学・組合わせ論との関係から研究した。以下、各年次における活動を記す。初年度(1997)においては、特にRIMS project1997(等質空間上の解析とLie群の表現)とタイアップして計画を遂行した。このプロジェクト研究では、等質空間という幾何的観点にたった実Lie群の表現の研究に焦点をあてた。海外からのべ約40名の参加者があり国際的な共同研究・研究交流の場が提供できた。この成果は、Advanced Studies in Pure Mathematics,vol.26に発表された。1998年は、RIMS project 1998(表現論における組合わせ論的方法)とタイアップして計画を遂行した。このプロジェクト研究では、海外からのべ約25名の参加者があり、量子群・アフィンへッケ環の表現論と組合わせ論を中心にして計画を行った。1999年は、国際高等研究所と数理解析研究所において"Physical Combinatorics"の国際シンポジュウムを開催し、数理物理と関連して研究を行った。量子群の表現論、Kniznik-Zamolodhikov方程式とそのq-変形の解の性質や共形場理論の研究を推進した。その成果は、"Physical Combinatorics,Progress in Math,vol.191,Birkhauserに発表された。2000年度は、計画の最終年として"数理物理における表現論および代数解析的方法の応用"を中心とする研究成果の発表を目的として、"Mathphys-Odyssey 2001"という国際シンポジュウムを開催した。この会議録は、Birkhauser出版から出版される予定である。