著者
Azusa Sakurama Yasutaka Fushimi Satoshi Nakajima Akihiko Sakata Takuya Hinoda Sonoko Oshima Sayo Otani Krishna Pandu Wicaksono Wei Liu Takakuni Maki Tomohisa Okada Ryosuke Takahashi Yuji Nakamoto
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0065, (Released:2021-10-01)
参考文献数
40

Purpose: To compare reliability and elucidate clinical application of magnetization-prepared rapid gradient-echo (MPRAGE) with 9-fold acceleration by using wave-controlled aliasing in parallel imaging (Wave-CAIPI 3 × 3) in comparison to conventional MPRAGE accelerated by using generalized autocalibrating partially parallel acquisition (GRAPPA) 2 × 1.Methods: A total of 26 healthy volunteers and 33 patients were included in this study. Subjects were scanned with two MPRAGEs, GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 acquired in 5 min 21 s and 1 min 42 s, respectively, on a 3T MR scanner. Healthy volunteers underwent additional two MPRAGEs (CAIPI 3 × 3 and GRAPPA 3 × 3). The image quality of the four MPRAGEs was visually evaluated with a 5-point scale in healthy volunteers, and the SNR of four MPRAGEs was also calculated by measuring the phantom 10 times with each MPRAGE. Based on the results of the visual evaluation, voxel-based morphometry (VBM) analyses, including subfield analysis, were performed only for GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. Correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was assessed.Results: In visual evaluations, scores for MPRAGE GRAPPA 2 × 1 (mean rank: 4.00) were significantly better than those for Wave-CAIPI 3 × 3 (mean rank: 3.00), CAIPI 3 × 3 (mean rank: 1.83), and GRAPPA 3 × 3 (mean rank: 1.17), and scores for Wave-CAIPI 3×3 were significantly better than those for CAIPI 3 × 3 and GRAPPA 3 × 3. Image noise was evident at the center for additional MPRAGE CAIPI 3 × 3 and GRAPPA 3 × 3. The correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was higher than 0.85 in all VOIs except globus pallidus. Subfield analysis of hippocampus also showed a high correlation between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3.Conclusion: MPRAGE Wave-CAIPI 3 × 3 shows relatively better contrast, despite of its short scan time of 1 min 42 s. The volumes derived from automated segmentation of MPRAGE Wave-CAIPI are considered to be reliable measures.
著者
Hidenori Takeshima
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0040, (Released:2021-09-17)
参考文献数
146
被引用文献数
3

This article presents an overview of deep learning (DL) and its applications to function approximation for MR in medicine. The aim of this article is to help readers develop various applications of DL. DL has made a large impact on the literature of many medical sciences, including MR. However, its technical details are not easily understandable for non-experts of machine learning (ML).The first part of this article presents an overview of DL and its related technologies, such as artificial intelligence (AI) and ML. AI is explained as a function that can receive many inputs and produce many outputs. ML is a process of fitting the function to training data. DL is a kind of ML, which uses a composite of many functions to approximate the function of interest. This composite function is called a deep neural network (DNN), and the functions composited into a DNN are called layers. This first part also covers the underlying technologies required for DL, such as loss functions, optimization, initialization, linear layers, non-linearities, normalization, recurrent neural networks, regularization, data augmentation, residual connections, autoencoders, generative adversarial networks, model and data sizes, and complex-valued neural networks.The second part of this article presents an overview of the applications of DL in MR and explains how functions represented as DNNs are applied to various applications, such as RF pulse, pulse sequence, reconstruction, motion correction, spectroscopy, parameter mapping, image synthesis, and segmentation.
著者
YingJie Kang YiLei Chen JieMing Fang YanWen Huang Hui Wang ZhiGang Gong SongHua Zhan WenLi Tan
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0084, (Released:2021-09-17)
参考文献数
23
被引用文献数
1

Purpose: To compare the performance of a 12-channel flexible head coil (HFC12) with commercial 16-channel (HRC16) and 24-channel (HRC24) rigid coils.Methods: The phantom study was performed on a 1.5 T MR scanner with HFC12, HRC16, and HRC24. The SNR and noise correlation matrix of T1WI, T2WI, and diffusion weighted imaging (DWI) were measured. The SNR profiles were created according to the SNR. In addition, 1/g-factors were calculated in different acceleration directions. In the in vivo study, T1WI, T2WI, and DWI were performed in one healthy volunteer with three different coils. The SNR and noise correlation matrix were measured.Results: In the phantom study and in vivo study, the SNR of HFC12 in the transverse, sagittal, and coronal planes was the highest, followed by HRC24, and that of HRC16 was the lowest. The SNR profiles showed that the SNR at the edge of HFC12 was the highest. The mean value of the noise correlation matrix of HFC12 was the highest. The 1/g-factor results showed that HFC12 obtained the best acceleration ability in the head–foot acceleration direction when the reduction factor was set to two. The SNR of HFC12 in most cortices was significantly higher than that of HRC16 and HRC24, except in the occipital cortex. The SNR of HRC24 in the occipital cortex was higher than that of HFC12.Conclusion: The SNR of HFC12 in T1WI, T2WI, and DWI was better than that of the HRC24 and HFC16. The SNR of HFC12 in the cortex was significantly higher than that of the commercial rigid head coil, except in the occipital cortex.
著者
Tomoko Maekawa Masaaki Hori Katsutoshi Murata Thorsten Feiweier Kouhei Kamiya Christina Andica Akifumi Hagiwara Shohei Fujita Koji Kamagata Akihiko Wada Osamu Abe Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.ici.2021-0083, (Released:2021-09-10)
参考文献数
12

Oscillating-gradient spin-echo sequences enable the measurement of diffusion weighting with a short diffusion time and can provide indications of internal structures. We report two cases of brain abscess in which the apparent diffusion coefficient (ADC) values appear higher at short diffusion times in comparison with those at long diffusion times. Diffusion time dependence of the ADC in brain abscesses suggests not only substrate viscosity but also restricted diffusion due to the structure within the lesions.
著者
Masato Yoshikawa Kohsuke Kudo Taisuke Harada Kazutaka Harashima Jun Suzuki Koji Ogawa Taro Fujiwara Mutsumi Nishida Ryota Sato Toru Shirai Yoshitaka Bito
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0175, (Released:2021-09-04)
参考文献数
46
被引用文献数
3

Purpose: The staging of liver fibrosis is clinically important, and a less invasive method is preferred. Quantitative susceptibility mapping (QSM) has shown a great potential in estimating liver fibrosis in addition to R2* relaxometry. However, few studies have compared QSM analysis and liver fibrosis. We aimed to evaluate the feasibility of estimating liver fibrosis by using QSM and R2*-based histogram analyses by comparing it with ultrasound-based transient elastography and the stage of histologic fibrosis.Methods: Fourteen patients with liver disease were enrolled. Data sets of multi-echo gradient echo sequence with breath-holding were acquired on a 3-Tesla scanner. QSM and R2* were reconstructed by water–fat separation method, and ROIs were analyzed for these images. Quantitative parameters with histogram features (mean, variance, skewness, kurtosis, and 1st, 10th, 50th, 90th, and 99th percentiles) were extracted. These data were compared with the elasticity measured by ultrasound transient elastography and histological stage of liver fibrosis (F0 to F4, based on the new Inuyama classification) determined by biopsy or hepatectomy. The correlation of histogram parameters with intrahepatic elasticity and histologically confirmed fibrosis stage was examined. Texture parameters were compared between subgroups divided according to fibrosis stage. Receiver operating characteristic (ROC) analysis was also performed. P < 0.05 indicated statistical significance.Results: The six histogram parameters of both QSM and R2*were significantly correlated with intrahepatic elasticity. In particular, three parameters (variance, percentiles [90th and 99th]) of QSM showed high correlation (r = 0.818–0.844), whereas R2* parameters showed a moderate correlation with elasticity. Four parameters of QSM were significantly correlated with fibrosis stage (ρ = 0.637–0.723) and differentiated F2–4 from F0–1 fibrosis and F3–4 from F0–2 fibrosis with areas under the ROC curve of > 0.8, but those of R2* did not.Conclusion: QSM may serve as a promising surrogate indicator in detecting liver fibrosis.
著者
Satoshi Otani Aki Kido Yuki Himoto Akihiko Sakata Tomoaki Otani Ryo Kuwahara Yusaku Moribata Naoko Nishio Ryo Yajima Kyoko Nakao Yasuhisa Kurata Sachiko Minamiguchi Masaki Mandai Yuji Nakamoto
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0003, (Released:2021-09-03)
参考文献数
26
被引用文献数
4

Purpose: To compare the diagnostic performance of dynamic contrast-enhanced-MR (DCE-MR) and delayed contrast-enhanced (CE)-MRI added to unenhanced MRI, including diffusion weighted image (DWI) for differentiating malignant adnexal tumors, conducting a retrospective blinded image interpretation study.Methods: Data of 80 patients suspected of having adnexal tumors by ultrasonography between April 2008 and August 2018 were used for the study. All patients had undergone preoperative MRI and surgical resection at our institution. Four radiologists (two specialized in gynecological radiology and two non-specialized) were enrolled for blinded review of the MR images. A 3-point scale was used: 0 = benign, 1 = indeterminate, and 2 = malignant. Three imaging sets were reviewed: Set A, unenhanced MRI including DWI; Set B, Set A and delayed CE-T1WI; and Set C, Set A and DCE-MRI. Imaging criteria for benign and malignant tumors were given in earlier reports. The diagnostic performance of the three imaging sets of the four readers was calculated. Their areas under the curve (AUCs) were compared using the DeLong method.Results: Accuracies of Set B were 81%–88%. Those of Set C were 81%–85%. The AUCs of Set B were 0.83 and 0.89. Those of Set C were 0.81–0.86. For two readers, Set A showed lower accuracy and AUC than Set B/Set C (less than 0.80), although those were equivalent in other readers. No significant difference in AUCs was found among the three sequence sets. Intrareader agreement was moderate to almost perfect in Sets A and B, and substantial to almost perfect in Set C.Conclusion: DCE-MR showed no superiority for differentiating malignant adnexal tumors from benign tumors compared to delayed CE-T1WI with conventional MR and DWI.
著者
Mai Banjar Saya Horiuchi David N. Gedeon Hiroshi Yoshioka
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0052, (Released:2021-09-01)
参考文献数
87
被引用文献数
20

Osteoarthritis (OA) is one of the most prevalent disorders in today’s society, resulting in significant socio-economic costs and morbidity. MRI is widely used as a non-invasive imaging tool for OA of the knee. However, conventional knee MRI has limitations to detect subtle early cartilage degeneration before morphological changes are visually apparent. Novel MRI pulse sequences for cartilage assessment have recently received increased attention due to newly developed compositional MRI techniques, including: T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), sodium MRI, diffusion-weighted imaging (DWI)/ diffusion tensor imaging (DTI), ultrashort TE (uTE), and glycosaminoglycan specific chemical exchange saturation transfer (gagCEST) imaging. In this article, we will first review these quantitative assessments. Then, we will discuss the variations of quantitative values of knee articular cartilage with cartilage layer (depth)- and angle (regional)-dependent approaches. Multiple MRI sequence techniques can discern qualitative differences in knee cartilage. Normal articular hyaline cartilage has a zonal variation in T2 relaxation times with increasing T2 values from the subchondral bone to the articular surface. T1rho values were also higher in the superficial layer than in the deep layer in most locations in the medial and lateral femoral condyles, including the weight-bearing portion. Magic angle effect on T2 mapping is clearly observed in the both medial and lateral femoral condyles, especially within the deep layers. One of the limitations for clinical use of these compositional assessments is a long scan time. Recent new approaches with compressed sensing (CS) and MR fingerprinting (MRF) have potential to provide accurate and fast quantitative cartilage assessments.
著者
Junqin Zhang Yuxi Ge Heng Zhang Zi Wang Weiqiang Dou Shudong Hu
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0067, (Released:2021-08-21)
参考文献数
24
被引用文献数
4

Purpose: Mucinous adenocarcinoma (MA) is associated with worse clinicopathological characteristics and a poorer prognosis than non-MA. Moreover, MA is related to worse tumor regression grade and tumor downstaging than non-MA. This study investigated whether lesions in MA and non-MA can be quantitatively assessed by T2 mapping technique and compared with the diffusion-weighted imaging (DWI).Methods: High-resolution MRI, DWI, and T2 mapping were performed on 81 patients diagnosed with rectal cancer via biopsy. Afterward, T2 and apparent diffusion coefficient (ADC) values were manually measured by a senior and a junior radiologist independently. By examining surgical specimens, the patients with MA and non-MA were identified. Inter-observer reproducibility was tested, and T2 and ADC values were compared using Mann–Whitney U test. Finally, receiver operating characteristic (ROC) curves were drawn to determine the cut-off value.Results: Of the 81 patients, 11 patients with MA were confirmed by pathology. The inter-observer reproducibility of T2 and ADC values showed an excellent intraclass correlation coefficient (ICC) of 0.993 and 0.913, respectively. MA had higher T2 (87.9 ± 5.11 ms) (P = 0.000) and ADC (2.03 × 10−3 mm2/s) (P = 0.000) values than non-MA (66.6 ± 6.86 ms and 1.17 × 10−3 mm2/s, respectively). The area under the ROC curves (AUC) of the T2 and ADC values were 0.999 (95% confidence interval [CI]: 0.953–1) and 0.979 (95% CI: 0.920–0.998), respectively. When the cutoff value in T2 mapping was 80 ms, the Youden index was the largest, sensitivity was 100%, and specificity was 97%.Conclusion: As a stable quantitative sequence, T2 mapping of MRI is useful in differentiating MA from non-MA. Compared to ADC values, T2 values are also diagnostically effective and non-inferior to ADC values.
著者
Shinsuke Koike Akiko Uematsu Daiki Sasabayashi Norihide Maikusa Tsutomu Takahashi Kazutaka Ohi Shinichiro Nakajima Yoshihiro Noda Yoji Hirano
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0050, (Released:2021-08-19)
参考文献数
145
被引用文献数
5

Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin’s time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.
著者
Tomohisa Okada Thai Akasaka Dinh HD Thuy Tadashi Isa
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0063, (Released:2021-08-06)
参考文献数
65
被引用文献数
3

After introduction of the first human 7 tesla (7T) system in 1999, 7T MR systems have been employed as one of the most advanced platforms for human MR research for more than 20 years. Currently, two 7T MR models are approved for clinical use in the U.S.A. The approval facilitated introduction of the 7T system, summing up to around 100 worldwide. The approval in Japan is much awaited. As a clinical MR scanner, the 7T MR system is drawing attention in terms of safety.Several large-sized studies on bioeffects have been reported for vertigo, dizziness, motion disturbances, nausea, and others. Such effects might also be found in MR workers and researchers. Frequency and severity of reported bioeffects will be presented and discussed, including their variances. The high resonance frequency and shorter RF wavelength of 7T increase the concern about the safety. Homogeneous RF pulse excitation is difficult even for the brain, and a multi-channel parallel transmit (pTx) system is considered mandatory. However, pTx may create a hot spot, which makes the estimation of specific absorption rate (SAR) to be difficult. The stronger magnetic field of 7T causes a large force of displacement and heating on metallic implants or devices, and the scan of patients with them should not be conducted at 7T. However, there are some opinions that such patients might be scanned even at 7T, if certain criteria are met. This article provides a brief review on the effect of the static magnetic field on humans (MR subjects, workers, and researchers) and neurons, in addition to scan sound, SAR, and metal implants and devices. Understanding and avoiding adverse effects will contribute to the reduction in safety risks and the prevention of incidents.
著者
Joji Ando Kimiko Yamamoto
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0018, (Released:2021-05-22)
参考文献数
96
被引用文献数
16

Cells in the tissues and organs of a living body are subjected to mechanical forces, such as pressure, friction, and tension from their surrounding environment. Cells are equipped with a mechanotransduction mechanism by which they perceive mechanical forces and transmit information into the cell interior, thereby causing physiological or pathogenetic mechano-responses. Endothelial cells (ECs) lining the inner surface of blood vessels are constantly exposed to shear stress caused by blood flow and a cyclic strain caused by intravascular pressure. A number of studies have shown that ECs are sensitive to changes in these hemodynamic forces and alter their morphology and function, sometimes by modifying gene expression. The mechanism of endothelial mechanotransduction has been elucidated, and the plasma membrane has recently been shown to act as a mechanosensor. The lipid order and cholesterol content of plasma membranes change immediately upon the exposure of ECs to hemodynamic forces, resulting in a change in membrane fluidity. These changes in a plasma membrane’s physical properties affect the conformation and function of various ion channels, receptors, and microdomains (such as caveolae and primary cilia), thereby activating a wide variety of downstream signaling pathways. Such endothelial mechanotransduction works to maintain circulatory homeostasis; however, errors in endothelial mechanotransduction can cause abnormalities in vascular physiological function, leading to the initiation and progression of various vascular diseases, such as hypertension, thrombosis, aneurysms, and atherosclerosis. Recent advances in detailed imaging technology and computational fluid dynamics analysis have enabled us to evaluate the hemodynamic forces acting on vascular tissue accurately, contributing greatly to our understanding of vascular mechanotransduction and the pathogenesis of vascular diseases, as well as the development of new therapies for vascular diseases.
著者
Koichi Ito Emiko Chiba Noriko Oyama-Manabe Satoshi Washino Osamu Manabe Tomoaki Miyagawa Kohei Hamamoto Masahiro Hiruta Keisuke Tanno Hiroshi Shinmoto
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0182, (Released:2021-05-15)
参考文献数
23
被引用文献数
1

Purpose: To assess the diagnostic performance of the tumor contact length (TCL) and apparent diffusion coefficient (ADC) for predicting extraprostatic extension (EPE) of prostate cancer with capsular abutment (CA).Methods: Ninety-three patients with biopsy-proven prostate cancer underwent 3-Tesla MRI, including diffusion-weighted imaging (b value = 0, 2000 s/mm2) and radical prostatectomy. Two experienced radiologists, blinded to the clinicopathological data, retrospectively assessed the presence of CA on T2-weighted imaging (T2WI). TCL on T2WI and ADC values were measured on detecting CA in prostate cancer. We used the receiver operating characteristic curves to assess the diagnostic performance of TCL and ADC values for predicting EPE.Results: CA was present in 58 prostate cancers among 93 patients. The cut-off value for TCL was 6.9 mm, which yielded an area under the curve (AUC) of 0.75. This corresponded to a sensitivity, specificity, and accuracy of 84.2%, 61.5%, and 69.0%, respectively. The cut-off value for ADC was 0.63 × 10–3 mm2/s, which yielded an AUC of 0.76. This, in turn, corresponded to a sensitivity, specificity, and accuracy of 84.2%, 59.0%, and 67.2%, respectively. The combined cut-off value of TCL and ADC yielded an AUC of 0.82. The specificity (84.6%) and accuracy (81.0%) of the combined value were superior to their individual values (P < 0.05).Conclusion: A combination of TCL and ADC values provided high specificity and accuracy for detecting EPE of prostatic cancer with CA.
著者
Yumi Tanaka Yoshiharu Ohno Satomu Hanamatsu Yuki Obama Takahiro Ueda Hirotaka Ikeda Akiyoshi Iwase Takashi Fukuba Hidekazu Hattori Kazuhiro Murayama Takeshi Yoshikawa Daisuke Takenaka Hisanobu Koyama Hiroshi Toyama
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2020-0184, (Released:2021-04-29)
参考文献数
228
被引用文献数
6

Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
著者
Shinji Naganawa Rintaro Ito Hisashi Kawai Mariko Kawamura Toshiaki Taoka Tadao Yoshida Michihiko Sone
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0010, (Released:2021-04-24)
参考文献数
36
被引用文献数
1

Purpose: To evaluate the relationship between the size of the venous structures related to the inner ear and the degree of endolymphatic hydrops (EH).Methods: Thirty-four patients with a suspicion of EH underwent whole brain MR imaging including the inner ear. Images were obtained pre- and post-administration, and at 4 and 24 hours after the intravenous administration of a gadolinium-based contrast agent (IV-GBCA). The cross-sectional areas (CSA) of the internal jugular vein (IJV), superior petrosal sinus (SPS), and inferior petrosal sinus (IPS) were measured on the magnetization prepared rapid acquisition of gradient echo (MPRAGE) images obtained immediately after the IV-GBCA. The grade of EH was determined on the hybrid of reversed image of positive endolymph signal and native image of positive perilymph signal (HYDROPS) images obtained at 4 hours after IV-GBCA as no, mild, and significant EH according to the previously proposed grading system for the cochlea and vestibule, respectively. The ipsilateral CSA was compared between groups with each level of EH grade. P < 0.05 was considered statistically significant.Results: There were no statistically significant differences between EH grades for the CSA of the IJV or that of the IPS in either the cochlea or the vestibule. The CSA of the SPS in the groups with significant EH was significantly smaller than that in the group with no EH, for both the cochlea (P < 0.01) and the vestibule (P < 0.05). In an ROC analysis to predict significant EH, the cut-off CSA value in the SPS was 3.905 mm2 for the cochlea (AUC: 0.8762, 95% confidence interval [CI]: 0.7952‒0.9572) and 3.805 mm2 for the vestibule (AUC: 0.7727, 95% CI: 0.6539‒0.8916).Conclusion: In the ears with significant EH in the cochlea or vestibule, the CSA of the ipsilateral SPS was smaller than in the ears without EH.
著者
Shinji Naganawa Rintaro Ito Hisashi Kawai Mariko Kawamura Toshiaki Taoka Mayuko Sakai Kazushige Ichikawa Tadao Yoshida Michihiko Sone
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.ici.2021-0022, (Released:2021-04-24)
参考文献数
12
被引用文献数
7

In this study, we present images acquired by a fast-imaging method for the evaluation of endolymphatic hydrops after intravenous administration of a single dose of gadolinium-based contrast agent. We utilized the hybrid of reversed image of MR cisternography and a positive perilymph signal by heavily T2- weighted 3D-fluid attenuated inversion recovery-multiplied by T2 (HYDROPS2-Mi2) method combined with deep learning reconstruction denoising. The scan time for the fast protocol was approximately 5 mins, which is far shorter than previously reported scan times. The fast acquisition provides similar image quality and less motion artifacts compared to the longer method.
著者
Yasuo Takatsu Masafumi Nakamura Satoshi Kobayashi Tosiaki Miyati
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0050, (Released:2020-05-27)
参考文献数
21
被引用文献数
3

Purpose: To investigate whether the contrast enhancement effect in hepatobiliary phase (HBP) images can be predicted using transitional phase (3-min delay) images on liver magnetic resonance imaging (MRI) based on the quantitative liver–spleen contrast ratio (Q-LSC) and albumin–bilirubin (ALBI) grade.Methods: Overall, 212 patients (124 men and 88 women; mean age 66.7 ± 11.1 years) who underwent blood tests (assessed within 1 month of performing MRI) were included; patients with diffuse tumor, hepatectomy, splenectomy, Gamna–Gandy bodies in the spleen, and movement artifacts were excluded. Q-LSC was calculated using the signal intensity of the liver divided that of the spleen. Q-LSC > 1.5 (cut-off value) indicates a relatively higher sensitivity for detecting of hepatic lesions. To predict the contrast enhancement effect in HBP using Q-LSC of 3-min delay images, Q-LSC of 10- and 15-min delay images were compared for each ALBI grade based on Q-LSC of 3-min delay images. Furthermore, to verify the accuracy of this prediction, the proportion of cases with Q-LSC > 1.5 in 10- and 15 min delay images was calculated based on Q-LSC on 3-min delay images.Results: The higher the Q-LSC on the 3-min delay image, the higher was the Q-LSC on its 10- and 15-min delay images. The proportion of cases with Q-LSC > 1.5 in 10- and 15-min delay images was higher for ALBI grade 1 than for ALBI grades 2 and 3 even in the same Q-LSC on 3-min delay images. Q-LSC was <1 in a 3-min delay image and <1.5 in a 15-min delay image in 62.2% of patients with ALBI grade 1 and 82.1% of patients with ALBI grades 2 and 3.Conclusion: The liver contrast enhancement effect in HBP images could be predicted using a 3-min delay image based on Q-LSC and ALBI grade.
著者
Yukihisa Takayama Akihiro Nishie Daisuke Okamoto Nobuhiro Fujita Yoshiki Asayama Yasuhiro Ushijima Tomoharu Yoshizumi Masami Yoneyama Kousei Ishigami
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0151, (Released:2021-04-20)
参考文献数
33
被引用文献数
5

Purpose: To evaluate the utility of T2-enhanced spin-echo imaging using the time-reversed gradient echo sequence (T2FFE imaging) in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI (Gd-EOB-MRI) for differentiating hemangiomas from metastatic tumors.Methods: A total of 61 patients with 133 liver lesions, including 37 hemangiomas and 96 metastatic tumors, were scanned by Gd-EOB-MRI. Four data sets were independently analyzed by two readers: (1) 3D fat-suppressed T2-weighted imaging (FS-T2WI) alone; (2) the combination of 3D FS-T2WI and T2FFE imaging in the HBP of Gd-EOB-MRI; (3) the combination of 3D FS-T2WI, diffusion-weighted imaging (DWI) with the b-value of 1000 s/mm2 and the apparent diffusion coefficient (ADC); and (4) a dynamic study of Gd-EOB-MRI. After classifying the lesion sizes as ≤ 10 mm or > 10 mm, we conducted a receiver-operating characteristic analysis to compare diagnostic accuracies among the four data sets for differentiating hemangiomas from metastatic tumors.Results: The areas under the curves (AUCs) of the four data sets of two readers were: (1) ≤ 10 mm (0.85 and 0.91) and > 10 mm (0.88 and 0.97), (2) ≤ 10 mm (0.94 and 0.94) and > 10 mm (0.96 and 0.95), (3) ≤ 10 mm (0.90 and 0.87) and > 10 mm (0.89 and 0.95), and (4) ≤ 10 mm (0.62 and 0.67) and > 10 mm (0.76 and 0.71), respectively. Data sets (2) and (3) showed no significant differences in AUCs, but both showed significantly higher AUCs compared to that of (4) regardless of the lesion size (P < 0.05).Conclusion: The combination of 3D FS-T2WI and T2FFE imaging in the HBP of Gd-EOB-MRI achieved an accuracy equivalent to that of the combination of 3D FS-T2WI, DWI, and ADC and might be helpful in differentiating hemangiomas from metastatic tumors.
著者
Hiroyuki Kabasawa
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0011, (Released:2021-04-16)
参考文献数
87
被引用文献数
8

Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities.In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
著者
Masatoki Nakaza Mitsuo Matsumoto Tetsuro Sekine Tatsuya Inoue Takahiro Ando Masashi Ogawa Makoto Obara Olgierd Leonowicz Shinichiro Kumita Jitsuo Usuda
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0170, (Released:2021-03-31)
参考文献数
40
被引用文献数
19

Purpose: The purpose of the current study was to clarify the blood flow pattern in the left atrium (LA), potentially causing the formation of thrombosis after left upper lobectomy (LUL). The blood flow in the LA was evaluated and compared between LUL patients with and without thrombosis. For the evaluation, we applied highly accelerated 4D flow MRI with dual-velocity encoding (VENC) scheme, which was expected to be able to capture slow flow components in the LA accurately.Methods: Eight volunteers and 18 patients subjected to LUL underwent dual-VENC 4D Flow MRI. Eight patients had a history of thrombosis. We measured the blood flow velocity and stasis ratio (proportion in the volume that did not exceed 10 cm/s in any cardiac phase) in the LA and left superior pulmonary vein (LSPV) stump. For visual assessment, the presence of each collision of the blood flow from pulmonary veins and vortex flow in the LA were evaluated. Each acquired value was compared between healthy participants and LUL patients, and in LUL patients with and without thrombosis.Results: In LUL patients, blood flow velocity near the inflow part of the left superior pulmonary vein (Lt Upp) and mean velocity in the LA were lower, and stasis ratio in the LA was higher compared with healthy volunteers (Lt Upp 9.10 ± 3.09 vs.13.23 ± 14.19 cm/s, mean velocity in the LA 9.81 ± 2.49 vs. 11.40 ± 1.15 cm/s, and stasis ratio 25.28 ± 18.64 vs. 4.71 ± 3.03%, P = 0.008, 0.037, and < 0.001). There was no significant difference in any quantification values between LUL patients with and without thrombosis. For visual assessment, the thrombus formation was associated with no collision pattern (62.5% vs. 10%, P = 0.019) and not with vortex flow pattern (50% vs. 30%, P = 0.751).Conclusion: The net blood flow velocity was not associated with the thrombus formation. In contrast, a specific blood flow pattern, the absence of blood flow collision from pulmonary veins, correlates to the thrombus formation in the LA.
著者
Sabriye Sennur Bilgin Mehmet Ali Gultekin Ismail Yurtsever Temel Fatih Yilmaz Dilek Hacer Cesme Melike Bilgin Atakan Topcu Mehmet Besiroglu Haci Mehmet Turk Alpay Alkan Mehmet Bilgin
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0183, (Released:2021-03-04)
参考文献数
29

Purpose: Histopathological differentiation of primary lung cancer is clinically important. We aimed to investigate whether diffusion tensor imaging (DTI) parameters of metastatic brain lesions could predict the histopathological types of the primary lung cancer.Methods: In total, 53 patients with 98 solid metastatic brain lesions of lung cancer were included. Lung tumors were subgrouped as non-small cell carcinoma (NSCLC) (n = 34) and small cell carcinoma (SCLC) (n = 19). Apparent diffusion coefficient (ADC) and Fractional anisotropy (FA) values were calculated from solid enhanced part of the brain metastases. The association between FA and ADC values and histopathological subtype of the primary tumor was investigated.Results: The mean ADC and FA values obtained from the solid part of the brain metastases of SCLC were significantly lower than the NSCLC metastases (P < 0.001 and P = 0.003, respectively). ROC curve analysis showed diagnostic performance for mean ADC values (AUC=0.889, P = < 0.001) and FA values (AUC = 0.677, P = 0.002). Cut-off value of > 0.909 × 10-3 mm2/s for mean ADC (Sensitivity = 80.3, Specificity = 83.8, PPV = 89.1, NPV = 72.1) and > 0.139 for FA values (Sensitivity = 80.3, Specificity = 54.1, PPV = 74.2, NPV= 62.5) revealed in differentiating NSCLC from NSCLC.Conclusion: DTI parameters of brain metastasis can discriminate SCLC and NSCLC. ADC and FA values of metastatic brain lesions due to the lung cancer may be an important tool to differentiate histopathological subgroups. DTI may guide clinicians for the management of intracranial metastatic lesions of lung cancer.