著者
Yukiko Imada Masahiro Watanabe Hiroaki Kawase Hideo Shiogama Miki Arai
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15A, pp.8-12, 2019 (Released:2019-06-07)
参考文献数
16
被引用文献数
13 70

The high temperature event in July 2018 caused record-breaking human damage throughout Japan. Large-ensemble historical simulations with a high-resolution atmospheric general circulation model showed that the occurrence rate of this event under the condition of external forcings in July 2018 was approximately 20%. This high probability was a result of the high-pressure systems both in the upper and lower troposphere in July 2018. The event attribution approach based on the large-ensemble simulations with and without human-induced climate change indicated the following: (1) The event would never have happened without anthropogenic global warming. (2) The strength of the two-tiered high-pressure systems was also at an extreme level and at least doubled the level of event probability, which was independent of global warming. Moreover, a set of the large-ensemble dynamically downscaled outputs revealed that the mean annual occurrence of extremely hot days in Japan will be expected to increase by 1.8 times under a global warming level of 2°C above pre-industrial levels.
著者
Yukiko Imada Masahiro Watanabe Hiroaki Kawase Hideo Shiogama Miki Arai
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.15A-002, (Released:2019-05-22)
被引用文献数
12 70

The high temperature event in July 2018 caused record-breaking human damage throughout Japan. Large-ensemble historical simulations with a high-resolution atmospheric general circulation model showed that the occurrence rate of this event under the condition of external forcings in July 2018 was approximately 20%. This high probability was a result of the high-pressure systems both in the upper and lower troposphere in July 2018. The event attribution approach based on the large-ensemble simulations with and without human-induced climate change indicated the following: (1) The event would never have happened without anthropogenic global warming. (2) The strength of the two-tiered high-pressure systems was also at an extreme level and at least doubled the level of event probability, which was independent of global warming. Moreover, a set of the large-ensemble dynamically downscaled outputs revealed that the mean annual occurrence of extremely hot days in Japan will be expected to increase by 1.8 times under a global warming level of 2°C above pre-industrial levels.
著者
Akihiko Shimpo Kazuto Takemura Shunya Wakamatsu Hiroki Togawa Yasushi Mochizuki Motoaki Takekawa Shotaro Tanaka Kazuya Yamashita Shuhei Maeda Ryuta Kurora Hirokazu Murai Naoko Kitabatake Hiroshige Tsuguti Hitoshi Mukougawa Toshiki Iwasaki Ryuichi Kawamura Masahide Kimoto Izuru Takayabu Yukari N. Takayabu Youichi Tanimoto Toshihiko Hirooka Yukio Masumoto Masahiro Watanabe Kazuhisa Tsuboki Hisashi Nakamura
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.15A, pp.13-18, 2019 (Released:2019-06-15)
参考文献数
22
被引用文献数
80

An extreme rainfall event occurred over western Japan and the adjacent Tokai region mainly in early July, named “the Heavy Rain Event of July 2018”, which caused widespread havoc. It was followed by heat wave that persisted in many regions over Japan in setting the highest temperature on record since 1946 over eastern Japan as the July and summertime means. The rain event was attributable to two extremely moist airflows of tropical origins confluent persistently into western Japan and large-scale ascent along the stationary Baiu front. The heat wave was attributable to the enhanced surface North Pacific Subtropical High and upper-tropospheric Tibetan High, with a prominent barotropic anticyclonic anomaly around the Korean Peninsula. The consecutive occurrence of these extreme events was related to persistent meandering of the upper-level subtropical jet, indicating remote influence from the upstream. The heat wave can also be influenced by enhanced summertime convective activity around the Philippines and possibly by extremely anomalous warmth over the Northern Hemisphere midlatitude in July 2018. The global warming can also influence not only the heat wave but also the rain event, consistent with a long-term increasing trend in intensity of extreme precipitation observed over Japan.
著者
Koichi Hashimoto Hajime Maeda Kyohei Miyazaki Masahiro Watanabe Sakurako Norito Ryo Maeda Yohei Kume Takashi Ono Mina Chishiki Kazuhide Suyama Masatoki Sato Mitsuaki Hosoya
出版者
National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
雑誌
Japanese Journal of Infectious Diseases (ISSN:13446304)
巻号頁・発行日
vol.74, no.2, pp.154-156, 2021-03-31 (Released:2021-03-24)
参考文献数
13
被引用文献数
1 3

Subacute sclerosing panencephalitis (SSPE) is a late-onset, intractable, and fatal viral disease caused by persistent infection of the central nervous system with a measles virus mutant (SSPE virus). In Japan, interferon-α and ribavirin are administered intracerebroventricularly to patients with SSPE. However, as the therapeutic effect is insufficient, more effective drugs are needed. Favipiravir, which is clinically used as an anti-influenza drug, demonstrates anti-viral effects against RNA viruses. In this study, the antiviral effect of favipiravir against measles virus (Edmonston strain) and SSPE virus (Yamagata-1 strain) was examined in vitro. The 50% effective concentration (EC50) of favipiravir (inhibiting viral plaque formation by 50%) against Edmonston and Yamagata-1 strains were 108.7 ± 2.0 μM (17.1 ± 0.3 μg/mL) and 38.6 ± 6.0 μM (6.1 ± 0.9 μg/mL), respectively, which were similar to those of ribavirin. The antiviral activity of favipiravir against the SSPE virus was demonstrated for the first time in this study.
著者
Akihiko Shimpo Kazuto Takemura Shunya Wakamatsu Hiroki Togawa Yasushi Mochizuki Motoaki Takekawa Shotaro Tanaka Kazuya Yamashita Shuhei Maeda Ryuta Kurora Hirokazu Murai Naoko Kitabatake Hiroshige Tsuguti Hitoshi Mukougawa Toshiki Iwasaki Ryuichi Kawamura Masahide Kimoto Izuru Takayabu Yukari N. Takayabu Youichi Tanimoto Toshihiko Hirooka Yukio Masumoto Masahiro Watanabe Kazuhisa Tsuboki Hisashi Nakamura
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
pp.15A-003, (Released:2019-05-17)
被引用文献数
80

An extreme rainfall event occurred over western Japan and the adjacent Tokai region mainly in early July, named “the Heavy Rain Event of July 2018”, which caused widespread havoc. It was followed by heat wave that persisted in many regions over Japan in setting the highest temperature on record since 1946 over eastern Japan as the July and summertime means. The rain event was attributable to two extremely moist airflows of tropical origins confluent persistently into western Japan and large-scale ascent along the stationary Baiu front. The heat wave was attributable to the enhanced surface North Pacific Subtropical High and upper-tropospheric Tibetan High, with a prominent barotropic anticyclonic anomaly around the Korean Peninsula. The consecutive occurrence of these extreme events was related to persistent meandering of the upper-level subtropical jet, indicating remote influence from the upstream. The heat wave can also be influenced by enhanced summertime convective activity around the Philippines and possibly by extremely anomalous warmth over the Northern Hemisphere midlatitude in July 2018. The global warming can also influence not only the heat wave but also the rain event, consistent with a long-term increasing trend in intensity of extreme precipitation observed over Japan.
著者
Michiya Hayashi Masahiro Watanabe
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.42-45, 2016 (Released:2016-02-25)
参考文献数
36
被引用文献数
1 2

Westerly (WWEs) and easterly (EWEs) wind events, short-lived anomalous westerly and easterly surface winds, are known to occur with unusual large magnitude over the equatorial Pacific. As their relative frequency of occurrence and dependence on background conditions are yet to be fully clarified, we analyzed daily surface winds for 1982-2013 from which WWEs and EWEs are detected. Both types of events appear over the Pacific warm pool, where sea surface temperature (SST) is sufficiently high for active deep convection, and favorably occur with increasing Niño4 SST. However, the frequency of occurrence of EWEs is less than that of WWEs, resulting in asymmetry in wind amplitude. Local and remote anomalous convections are equally important in exciting these events, but different local development processes cause the asymmetry in the frequency of occurrence. These results can also be seen in wind stress anomalies, albeit obscured due to nonlinearity therein.
著者
Masae Otake Kenichi Sakurai Masahiro Watanabe Chisato Mori
出版者
Japan Epidemiological Association
雑誌
Journal of Epidemiology (ISSN:09175040)
巻号頁・発行日
pp.JE20170019, (Released:2018-04-28)
参考文献数
49
被引用文献数
8

Background: Several studies have reported the adverse effects of caffeine intake during pregnancy on fetal health. However, the effects of caffeine intake from green and oolong teas has not been investigated, despite the considerable consumption of these teas in Japan and the potential inhibitory effects of catechins—chemicals present at relatively high levels in green and oolong teas—on folic acid absorption. The potential associations of serum folate levels with caffeinated beverage consumption and catechin levels remain largely unstudied. The present study aimed to determine these associations in pregnant Japanese women.Methods: Pregnant women (n = 2,701) not receiving folate supplementation were enrolled at the Chiba Unit Center, a regional site of the Japan Environment and Children’s Study (JECS). Serum folate levels were measured using an Access folate assay kit, and nutrient and caffeine intakes were assessed using a self-administered food frequency questionnaire that was previously evaluated in Japanese populations.Results: The low and normal serum folate groups reported caffeine intakes of 42.3 mg/1,000 kcal and 34.4 mg/1,000 kcal, respectively, and tannin intakes of 40.8 mg/1,000 kcal and 36.3 mg/1,000 kcal, respectively. Multiple regression analyses revealed negative associations of serum folate levels with caffeine and tannin intakes and a positive association between serum folate levels and dietary folate intake.Conclusions: Considering the negative associations of caffeine and tannin levels with serum folate levels, pregnant women should consume caffeinated beverages, such as coffee and green/oolong teas, with caution.
著者
Hideo Shiogama Yukiko Imada Masato Mori Ryo Mizuta Dáithí Stone Kohei Yoshida Osamu Arakawa Mikiko Ikeda Chiharu Takahashi Miki Arai Masayoshi Ishii Masahiro Watanabe Masahide Kimoto
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.225-231, 2016 (Released:2016-08-07)
参考文献数
37
被引用文献数
4 25

We describe two unprecedented large (100-member), long-term (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the “Database for Policy Decision making for Future climate change (d4PDF)”. We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicate that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001-2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.
著者
Yasushi Matsui Shoji Takayanagi Takuya Ohira Masahiro Watanabe Hiroki Murano Yasufumi Furuhata Shumpei Miyakawa
出版者
The Society of Physical Therapy Science
雑誌
Journal of Physical Therapy Science (ISSN:09155287)
巻号頁・発行日
vol.31, no.1, pp.95-101, 2019 (Released:2019-01-29)
参考文献数
42
被引用文献数
3 7

[Purpose] The aim of this study was to determine whether the consumption of a leucine-enriched essential amino acid mixture (LEAA), which is known to increase protein synthesis in muscles, alleviates muscle damage and accelerates recovery by ameliorating muscle damage. [Participants and Methods] A double-blind, randomized crossover trial was conducted over a 5-week period. Ten untrained males (age, 23.0 ± 1.6 years) were asked to repeatedly flex and extend their elbows for 10 counts/set × 5 sets at full power while using a dynamometer. The participants took 3.6-g supplements (LEAA mixture or placebo) 3 times daily on day 0 and for the next 7 days. Changes in serum creatine phosphokinase (CPK) activity and myoglobin concentration as markers of muscle tissue damage were evaluated prior to and after exercise and on days 1, 2, 3, 5, and 7. [Results] The relative ratio of the changes in peak serum CPK activity measured on day 5 was significantly lower after taking LEAA than after taking the placebo. [Conclusion] LEAA consumption suppressed exercise-induced elevation of muscle damage markers in blood, which suggests that LEAA could attenuate muscle damage and aid muscle recovery.
著者
Yoshimitsu CHIKAMOTO Masahide KIMOTO Masayoshi ISHII Masahiro WATANABE Toru NOZAWA Takashi MOCHIZUKI Hiroaki TATEBE Takashi T. SAKAMOTO Yoshiki KOMURO Hideo SHIOGAMA Masato MORI Sayaka YASUNAKA Yukiko IMADA Hiroshi KOYAMA Masato NOZU Fei-fei JIN
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.90A, pp.1-21, 2012 (Released:2012-06-07)
参考文献数
52
被引用文献数
14 24

Sea surface temperature (SST) predictability in the Pacific on decadal timescales is examined in hindcast experiments using the coupled atmosphere-ocean model MIROC with low, medium, and high resolutions. In these hindcast experiments, initial conditions are obtained from an anomaly assimilation procedure using the observed oceanic temperature and salinity while prescribing natural and anthropogenic forcing based on the IPCC concentration scenarios. Our hindcast experiments show the predictability of SST in the western subtropical Pacific, the Indian Ocean, and the tropics to the North Atlantic. Previous studies have examined the SST predictability in the Indian Ocean and the Atlantic, but SST predictability in the western subtropical Pacific has not been evaluated. In the western Pacific, the observed SST anomalies in the subtropics of both hemispheres increased rapidly from the early 1990s to the early 2000s. While this SST warming in the western subtropical Pacific is partly explained by global warming signals, the predictions of our model initialized in 1995 or 1996 tend to simulate the pattern of the SST increase and the associated precipitation changes. This large climate change around the late 1990s may be related to phenomena such as the recent increase in the typhoon frequency in Taiwan and the weakened East Asian monsoon reported by recent studies.
著者
Hideo Shiogama Masahiro Watanabe Yukiko Imada Masato Mori Youichi Kamae Masayoshi Ishii Masahide Kimoto
出版者
(公社)日本気象学会
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.10, pp.122-126, 2014 (Released:2014-08-02)
参考文献数
35
被引用文献数
8 39 1

A severe heat wave occurred in the southwestern United States (US) during June and July 2013. To investigate the effects of natural variability and anthropogenic climate change on this event, we generated large ensemble simulations of possible weather using the MIROC5A climate model forced by “historical external forcing agents, sea surface temperature (SST) observations and sea ice (SIC) observations” both with and without human influence. It was suggested that both the anthropogenic warming and an atmospheric circulation regime related to the natural variability of SST and SIC made the heat wave event more likely. On the other hand, no significant human influence was found in atmospheric circulation patterns. These results were robust for two different estimates of anthropogenic signals on SST and SIC.
著者
Masato MORI Masahide KIMOTO Masayoshi ISHII Satoru YOKOI Takashi MOCHIZUKI Yoshimitsu CHIKAMOTO Masahiro WATANABE Toru NOZAWA Hiroaki TATEBE Takashi T. SAKAMOTO Yoshiki KOMURO Yukiko IMADA Hiroshi KOYAMA
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.91, no.4, pp.431-452, 2013 (Released:2013-09-06)
参考文献数
54
被引用文献数
5 14

In line with the experimental design for near-term climate prediction toward the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, we perform ensembles of initialized decadal hindcast and near-future projection using three versions of the coupled atmosphere-ocean model MIROC. In the present study, we explore interannual and multiyear predictability of tropical cyclone (TC) activity in the western North Pacific (WNP) using the initialized hindcasts and examine global warming impacts on TC activity in the near-future on the basis of near-future projections up to 2035. The hindcasts of year-to-year variation in TC number capture the observed values reasonably well. Moreover, interannual variability of TC genesis and occurrence frequency associated with the El Niño Southern Oscillation are found to be predictable, mainly through better prediction of sea surface temperature (SST) and large-scale vorticity anomalies in the lower troposphere. These results indicate that the models can reproduce the major basic mechanisms that link TC genesis with large-scale circulation. Skillful prediction of TC number is likely difficult on multiyear timescales, at least based on our hindcasts, but through initializations, the three-year-mean hindcasts from 1998 onward reasonably capture observed major characteristics of TC activity associated with Pacific climate shift during the late 1990s. Near-future projections (2016-2035) suggest significant reductions (approximately 14%) in TC number, particularly over the western part of the WNP, even under scenarios in which projected global warming is less prominent than that at the end of this century. This reduction is likely due to the suppression of large-scale lower tropospheric vorticity and relative humidity and the enhancement of vertical wind shear. The projected SST exhibits a more pronounced warming over the eastern tropical Pacific than over the western region and accompanies the weakening of Walker circulation via redistribution of tropical convection activity, which appears to be responsible for the change in the large-scale fields in the WNP.