著者
小池 孝良 村上 正志 柴田 英昭 日浦 勉 高木 健太郎 田中 夕美子
出版者
北海道大学
雑誌
特定領域研究(B)
巻号頁・発行日
1999

光合成速度のピークは6月下旬で8-16umol・m^<-2>s^<-1>低下は樹種に特徴的。CO2付加では針葉樹材の細胞内腔が増加した。成熟林の1998〜2000年の現存量成長量は0.44、0.60、0.48tC・ha^<-1>yr^<-1>であった。総胸高断面積は32322.8m^2、平均胸高断面積は14.4m^2・ha^<-1>であった。総現存量は59626.9tC、平均現存量は26.6tC・ha^<-1>であった。1999〜2001年の平均NEPは258 gC m^<-2> y^<-1>土壌から大気へ放出される炭素フラックスは平均580 gC m^<-2> y^<-1>でNEPの二倍以上を示した。GEPは838 gC m^<-2> y^<-1>でありGEPに占めるNEPの割合はおよそ30%であった。幹呼吸量は土壌呼吸速度の11〜20%に相当した。GEPの算出に幹呼吸を入れると929 gC m^<-2> y^<-1>となり、樹木葉(含枝呼吸)の総光合成速度に相当した。リタートラップによると土壌還元量は三年間平均で118 gC m^<-2> y^<-1>であり、GEP(929 gC m^<-2> y^<-1>)の約13%であった。枯死による炭素還元量は79 gC m^<-2> y^<-1>であった。地上から地下部への炭素転流量は549 gC m^<-2> y^<-1>であった。植生から土壌へ流入する炭素フラックスは533 gC m^<-2> y^<-1>であった。GEPの約57%の炭素が根系を経て土壌へと供給された。河川への炭素放出は溶存有機炭素(DOC)、溶存無機炭素(DIC)、粒状有機炭素(POC)に大別される。全溶存炭素濃度濃度は4.1±1.8 gC m^<-2> y^<-1>で、DICの占める割合は約67%でありDOCとPOCは同程度で、流域からの炭素流出量はNEPの1.6%で約254 gC m^<-2> y^<-1>炭素が蓄積された。このうち108 gC m^<-2> y^<-1>(43%)が植生に146 gC m^<-2> y^<-1>(57%)が土壌へ蓄積された。
著者
林 健太郎 柴田 英昭 江口 定夫 種田 あずさ 仁科 一哉 伊藤 昭彦 片桐 究 新藤 純子 谷 保静 Winiwarter Wilfried
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

20世紀はじめに大気中の窒素分子(N2)からアンモニア(NH3)を合成するハーバー・ボッシュ法を確立した人類は,反応性窒素(N2を除く窒素化合物)を望むだけ作り出せるようになった.化石燃料などの燃焼に伴い発生する窒素酸化物(NOx)を合わせると,人類が新たに作り出す反応性窒素の量は今や自然起源の生成量と同等である.しかし,人類の窒素利用効率(投入した窒素のうち最終産物に届く割合)は人間圏全体で約20%と低い.必然的に残りは大気・土壌・陸水・海洋に排出され,地球システムの窒素循環は加速された状態にある.反応性窒素には多様な化学種が含まれる(例:NH3,NOx,一酸化二窒素[N2O],硝酸態窒素[NO3–]など).環境に排出された反応性窒素は形態を変化させつつ環境媒体を巡り,最終的に安定なN2に戻るまでの間に,各化学種の性質に応じた環境影響をもたらす(例:地球温暖化,大気汚染,水質汚染,酸性化,富栄養化,これらによる人の健康や生態系の機能・生物多様性への影響).この複雑な窒素の流れと環境影響を窒素カスケードとも称する.現在の人為的な窒素循環の加速は,地球システムの限界(プラネタリー・バウンダリー)を既に超えていると評価されている.窒素は人間社会と自然の全てを繋いでめぐっていることから,人間活動セクター(エネルギー転換,産業,農林水産業,人の生活,廃棄物・下水処理,貿易)と環境媒体(大気,土壌,地表水,地下水,海洋)をどのようにどの程度の量の窒素が流れているかを把握することが,窒素カスケードの実態を把握する上で望まれる.これが窒素収支評価である.欧州の窒素収支評価ガイダンス文書によれば,窒素収支評価の必要性と有用性は以下のとおりである:窒素カスケードの潜在影響を可視化する,政策決定者の意思決定に必要な情報を提供する,環境影響や環境保全政策のモニタリングツールとなる,国際比較の機会を与える,および知識の不足(ギャップ)を明らかにして窒素カスケードの科学的理解の改善に貢献する.地球環境ファシリティの国際プロジェクトであるTowards INMS (International Nitrogen Management System) では国別窒素収支評価の手法開発を進めており,我々もその一環として日本の窒素収支評価に取り組んでいる.国別窒素収支評価の手法として,欧州反応性窒素タスクフォースのEPNB (Expert Panel on Nitrogen Budgets) ガイドラインや,中国で開発されたCHANS (Coupled Human and Natural Systems) モデルなどが先行しており,我々はCHANSモデルの日本向けの改良を進めている.CHANSモデルは主要セクター・媒体をそれぞれ一つのプールとし,プール間を結ぶ窒素フローを定量する.日本向けの改良では以下のプールを設けている:エネルギー・燃料,産業,作物生産,家畜生産,草地,水産,人の生活,廃棄物,下水,森林,都市緑地,大気,地表水,地下水,沿岸海洋.プールの中には必要に応じて複数のサブプールを定義し(例:産業の中に食品産業,飼料産業,その他製造業など),サブプール間の窒素フローを求めた上で,プールごとに集計する.このうち,特に生物地球化学の知見が求められることは,人間活動プールと環境媒体プール間のフロー,環境媒体プール間のフロー,および環境媒体プール内のストック変化である.具体的な課題として次のフローやプロセスが挙げられる:1) 人為による大気排出,2) 人為による陸域への投入,3) 人為による地表水の利用と地表水への排出,4) 人為による地下水の利用と地下水への直接・間接の排出,5) 人為による沿岸海洋への排出,6) 大気-陸面相互作用(多くの過程を含む),7) 陸域内プロセスと蓄積,8) 地表水-地下水-沿岸海洋のフロー,9) 沿岸海洋-外海間のフロー.本発表では,日本向けCHANSモデルの概要と,上記の課題の現状の算定方法を紹介し,生物地球化学の観点からの精緻化について参加者と議論したい.
著者
種田 あずさ 柴田 英昭 新藤 純子
出版者
日本LCA学会
雑誌
日本LCA学会誌 (ISSN:18802761)
巻号頁・発行日
vol.14, no.2, pp.120-133, 2018 (Released:2019-12-15)
参考文献数
41
被引用文献数
1 2

人間活動によって生成した反応性窒素は、人間および環境に対する脅威をもたらしている。窒素フットプリントは、人間活動を通じた環境への反応性窒素放出(窒素ロス)を、消費者の活動を基準として定量化できる新たな指標である。本稿では、窒素フットプリント算出法として提案されている3つの方法(N-Calculator法、N-Input法、N-Multi-region法)について解説するとともに、これらの評価方法の特徴を生かした活用方法や今後の展開について述べる。N-Calculator法は、消費者一人あたりの食料・エネルギーの消費量に基づくボトムアップ型の分析法である。この方法を使うことで、一つ一つの消費行動がどのように窒素フットプリントに影響するかを定量的に評価、可視化することができる。N-Input法は、食料の生産・輸出入量と、その生産のために使われた農地への窒素投入量に基づくトップダウン分析を用いる。この方法は、複数の国から多くの食料を輸入している国について精緻に算出を行うことができる。N-Multi-region法は、各国・各部門からの反応性窒素排出量について、拡張された世界多地域間産業連関表を用いた産業連関分析を適用する。この方法を使えば、グローバルな貿易の影響を含めた多くの国の窒素フットプリントを評価することが可能であり、複雑な国際サプライチェーンや窒素ロスに関与する反応性窒素の種類を解析することもできる。本稿では、さらに、低減策の主なものとして、食品選択、家庭系ごみの削減、ラベル表示(窒素・カーボン・ウォーターフットプリント)、機関レベルのフットプリント分析(窒素・カーボン)、窒素フットプリントのオフセットの現状と可能性について述べる。また、窒素フットプリントに関する研究プロジェクトについてもいくつか紹介する。
著者
柴田 英昭 田中 夕美子 佐久間 敏雄
出版者
一般社団法人日本土壌肥料学会
雑誌
日本土壌肥料學雜誌 (ISSN:00290610)
巻号頁・発行日
vol.65, no.4, pp.406-412, 1994-08-05

雪面に対する乾性降下物の沈着速度および積雪内部における物質の再分配を明らかにするために,1991年12月〜1992年4月に苫小牧市高丘に立地する森林地帯の開放露場において降雪および積雪の量と化学性を観測した.H^+ を除く,ほとんどのイオンにおいて降雪の平均イオン濃度は降雨のそれよりも高い値を示し,降雪による月間イオン負荷量は降雨に匹敵する大きな値を示した.乾性降下物の沈着フラックスを積雪中に存在する物質量と降雪によって供給される積算湿性降下物量の増加速度の差から見積もった.得られた沈着フラックス(μmol_c m^<-2> d^<-1>)は Cl^<-1>>Na^+>NH_4^+ の順に大きかった.SO_4^<2-> の乾性沈着フラックスは 27 μmol_c m^<-2> d^<-1> と見積もられ,海水起源以外の汚染源から主として供給されたものと推定された.また,雪面からわずかに雪が溶けることによって積雪中の物質が積雪内部を移動したことが推定され,これらの物質はざらめ雪上部で高濃度で集積する傾向にあった.また,その移動フラックスは乾性沈着フラックスの大きいイオンほど大きかった.イオンの移動速度係数(cm d^<-1>)は K^+,NH_4^+ が高い値を示した.
著者
若松 孝志 高橋 章 佐藤 一男 久保井 喬 柴田 英昭
出版者
一般社団法人日本土壌肥料学会
雑誌
日本土壌肥料學雜誌 (ISSN:00290610)
巻号頁・発行日
vol.75, no.2, pp.169-178, 2004-04-05
被引用文献数
6

アカマツ林の林床に^<15>NH_4^+を添加し,70日後までの林床植生,有機質・無機質土層への^<15>Nの移行量を調べた.さらに,室内培養実験により窒素の形態変化速度を測定し,^<15>Nの動態と微生物による窒素代謝との関係を調べた.^<15>N添加30日後の各プールヘの15N移行量は,林床植生5%,有機質上層56%,無機質土層44%であった.70日後には,無機質土層への移行量が増大したが,37%の^<15>Nが有機質土層に保持されていた.土壌水の観測結果から,無機質土層へ浸透する窒素の95%をNO_3^-が占めることが分かった.また,^<15>NH_4^+を添加したにもかかわらず,添加初期には土壌表層のNO_3^-のδ^<15>N値が著しく上昇し,またそのピークは時間の経過とともに下層に移動した.このことから,林床に沈着したNH_4^+のほとんどは,有機質土層で硝化によりNO_3^-に変化した後に,下層土壌へ移行することが裏付けられた.室内培養実験の結果,有機質土層(Oe-Oa層)における硝化速度(20mg N kg^<-1> d^<-1>)は,微生物の代謝によるNH_4^+の有機化と窒素無機化の速度(145mg N kg^<-1> d^<-1>)の1/7程度であった.このことから,大気由来のNH_4^+は林床に沈着した後,すべてが硝化に向うのではなく,微生物の窒素代謝のサイクルに取り込まれることが推察された.このことが,70日経週後も,添加した^<15>Nの4割が有機質土層に保持された主要な要因と考えられた.本調査地の有機質土層における窒素の形態変化速度は,ほぼ同量の窒素が大気から負荷されているオランダの森林よりも1桁程度大きかった.これには本調査地における温暖多雨な気候条件と酸性度の低い土壌条件が関与していることが推察された.