著者
KAWAI Kei KAI Kenji JIN Yoshitaka SUGIMOTO Nobuo BATDORJ Dashdondog
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-023, (Released:2018-01-26)

The Gobi Desert is one of the major sources of Asian dust, which influences the climate system both directly and indirectly through its long-range transport by the westerlies. In this desert, three ground-based lidars are operated in Dalanzadgad, Sainshand, and Zamyn-Uud, Mongolia. This study firstly combined these lidars into a lidar network and shows the spatial development of a dust layer over the desert and the long-range transport of the dust during 22–23 May 2013 via the lidar network. During this dust event, a cold front accompanying an extratropical cyclone moved southeastward across the desert and sequentially passed through Dalanzadgad, Sainshand, and Zamyn-Uud. In Dalanzadgad, in the central part of the desert, a dust storm occurred owing to the strong wind (6–10 m s -1) associated with the cold front and reached a top height of 1.6 km. Some of the dust floated at a height of 0.9–1.6 km along the cold frontal surface. In Sainshand and Zamyn-Uud, in the eastern part of the desert, the dust layer extended from the atmospheric boundary layer (ABL) to the free troposphere in the updraft region of warm air in the cold frontal system. Overall, while the dust layer was moving across the desert with the cold frontal system, it was developing up to the free troposphere. The mechanism of this development can be explained by the combination of two processes as follows: (1) continuous emission of dust from the desert surface to the ABL by the strong wind around the cold front and (2) continuous transport of the dust from the ABL to the free troposphere by the updraft of the warm air in the cold frontal system. This mechanism can contribute to the long-range transport of dust by the westerlies in the free troposphere.
著者
SEINO Naoko ODA Ryoko SUGAWARA Hirofumi AOYAGI Toshinori
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-029, (Released:2018-02-17)
被引用文献数
1

During the Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities (TOMACS) intensive observation period (IOP) in 2011-2013 summers, atmospheric environment of several heavy rainfalls was observed by means of radiosonde soundings in the Tokyo metropolitan area. We investigated formation and development processes of an extremely developed thunderstorm (Case 1 on 26 August 2011) and a moderately developed thunderstorm (Case 2 on 18 July 2013) observed in the TOMACS IOP, utilizing the radiosonde sounding data. Compared to Case 2, the mesoscale environment of the severe storm in Case 1 featured a lower level of free convection and a deeper layer of easterly flow. We carried out numerical simulations to investigate the formation processes of the convective systems in the two cases, using the Non-Hydrostatic Model (NHM) of the Japan Meteorological Agency (JMA) incorporating the Square Prism Urban Canopy (SPUC) scheme. Model results fairly represented the spatial distribution and amounts of the rainfall in both cases. In Case 1, the formation of a distinct convergence zone between easterly and southerly flows was the likely trigger of active convective systems around Tokyo. To further examine the urban impact on precipitation, we performed two comparative simulations, one using realistic current urban surface conditions (CRNT experiment) and the other using less urbanized surface conditions (LURB experiment). The CRNT experiment yielded more rainfall than the LURB experiment in the central urban area. It appears that higher temperatures caused by urbanization can lead to increased rainfall in Tokyo by intensifying convergence and ascending motion.
著者
V. CHANDRASEKAR Haonan CHEN Brenda PHILIPS
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-015, (Released:2018-01-12)
被引用文献数
2

The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) Urban Demonstration Network consists of a combination of high resolution X-band radar network and a National Weather Service S-band radar system (i.e., KFWS radar). Based primarily on these radars, CASA has developed end-to-end warning system that includes sensors, software architecture, products, data dissemination and visualization, and user decision making. This paper presents a technical summary of the DFW radar network for urban weather disaster detection and mitigation, from the perspective of tracking and warning of hails, tornadoes, and floods. Particularly, an overview of the X-band radar network design tradeoffs is presented. The architecture and associated algorithms for various product systems are described, including the real-time hail detection system, the multiple Doppler vector wind retrieval system, and the high-resolution quantitative precipitation estimation system. Sample products in the presence of high wind, tornado, hail, and flash flood are provided, and the systems’ performance is demonstrated through cross validation with ground observations and weather reports.
著者
HIRANO Kohin MAKI Masayuki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-028, (Released:2018-02-24)

This paper reports the development of a very-short-range nowcast system, VIL Nowcast, which aims to provide precise forecasts of imminent rainfall, and in particular, heavy and localized events. The system is based on the vertically integrated liquid water content (VIL), which is estimated from three-dimensional radar observations as well as the 1-minute-resolution rainfall map obtained from the X-band polarimetric (multi-parameter) RAdar Information Network (XRAIN), to predict rainfall amounts over 10 minutes periods that extend to 10--60 minutes into the future. The spatial resolution of VIL Nowcast was 500 m, and nowcasts were produced at a temporal resolution of 5 minutes. Three precipitation events, of which two were isolated storms and one was a synoptic storm, were used as case studies to verify the model. The performance of VIL Nowcast was evaluated against the XRAIN radar rainfall data and an existing rainfall-rate nowcast system using the same advection scheme. The scope of the evaluation was limited mainly to the first prediction for 10 minutes ahead. It was found that VIL Nowcast showed a small, statistically significant improvement over the entire precipitation event, although its skill decreased at longer lead times and at higher thresholds. The key findings of this study are: (1) VIL Nowcast appears capable of generating skillful forecasts at short lead times, even for very localized heavy rainfall; (2) VIL Nowcast can reduce the time lag in the rainfall-rate nowcast system at initiation and peak precipitation; and (3) this system may improve the accuracy of heavy rainfall alerts provided for public activities and emergency alarms.
著者
Robert CIFELLI V. CHANDRASEKAR Haonan CHEN Lynn E. JOHNSON
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-016, (Released:2018-01-12)
被引用文献数
5

An X-band radar system was deployed in Santa Clara, CA from February through May 2016 to support the National Weather Service in the event of potential flooding during one of the largest El Niños on record and to provide better understanding of rainfall processes occurring in the Bay Area. The system was also used to provide high quality precipitation estimation (quantitative precipitation estimation - QPE) for Santa Clara’s urban hydrologic modeling system. Although the Bay Area has coverage from the NEXRAD operational radar network, the combination of topographic influences and proximity to a maritime environment provide unique QPE challenges in this urban region. The X-band radar provided high quality rainfall estimates that performed better than NEXRAD, demonstrating the added value of the X-band system. High resolution rainfall monitoring systems in urban regions also provide a host of benefits across different sectors of the economy, including flood damage mitigation, water quality, water supply, and transportation.
著者
Tetsuya SANO Satoru OISHI
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-012, (Released:2017-12-21)

To elucidate the formation of a localized rainfall on a basin with heat and aridity under weak synoptic disturbance in summer, the characteristics of atmospheric conditions on the Kofu Basin preceding the appearance of primary precipitating cells were described from 23 localized rainfall events on the Kofu Basin on days of weak synoptic disturbance at the surface from 1 June to 30 September in 2012 to 2014. Furthermore, using the case study conducted on 25 July 2014, the formation of the atmospheric conditions was described from the standpoint of moisture behavior. Owing to the thermal contrast between the Kofu Basin with heat and aridity and the outside environment, the south-component wind blowing in the valley connecting it to the coastal region of Suruga Bay and the east-component wind blowing in the valley connecting it to the Kanto Plain entered the Kofu Basin as southwesterly wind and southeasterly wind, respectively, which caused an increase in the water vapor mixing ratio and a slight decrease in temperature at the surface. After that, the amount of precipitable water vapor derived by the global navigation satellite system observation (GNSS-PWV) at Nakamichi in the central region of the Kofu Basin increased abruptly after the moderate increase in GNSS-PWV at all the observation points on the Kofu Basin. Finally, a cloud appeared over the local region between the southwesterly wind and the southeasterly wind; the precipitating cells appeared here at 3.25 to 6.25 km above sea level. From the above results, the moisture transport to the Kofu Basin, the moisture concentration in the local region, and the appearance of precipitating cells were discussed as the formation of atmospheric conditions leading to a localized rainfall on a basin with heat and aridity.
著者
Takuya KAWABATA Hans-Stefan BAUER Thomas SCHWITALLA Volker WULFMEYER Ahoro ADACHI
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-017, (Released:2017-12-27)

In the preparation for polarimetric radar data assimilation, it is essential to examine the accuracy of forward operators based on different formulations. For this purpose, four forward operators that focus on warm rain condition are compared with both each other and actual observations with respect to their performance for C-band dual polarimetric radars. These operators mutually consider radar beam broadening and climatological beam bending. The first operator derives polarimetric parameters assuming an exponential raindrop size distribution obtained by the models and is based on fitting functions against scattering amplitudes. The other three converters estimate the mixing ratio of rainwater from the measured polarimetric parameters. The second converter uses both the horizontal reflectivity (ZH) and the differential reflectivity (ZDR), the third uses the specific differential phase (KDP), and the fourth uses both KDP and ZDP, respectively. Comparisons with modeled measurements show that the accuracy of the third converter is superior to the other two. Another evaluation with actual observations shows that the first converter has slightly higher fractions skill scores than the other three. Considering the attenuation effect, the fitting function and the operator only with KDP are found to be the most suitable for data assimilation at C-band.
著者
Baosheng Li Ruiqiang Ding Jianping Li Yidan Xu Jiao Li
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.52-56, 2018 (Released:2018-04-26)
参考文献数
33

The connection between the predictability of the East Asian summer monsoon (EASM) and El Niño-Southern Oscillation (ENSO) has recently attracted widespread attention. Of particular importance is the effect of El Niño and La Niña on EASM predictability. In this paper, the signal-to-noise ratio (SNR) method is used to analyze reanalysis data, and the results show that the EASM potential predictability intensity is much stronger under El Niño forcing than that under La Niña forcing. Meanwhile, the asymmetric response of EASM predictability remains within the Community Atmosphere Model (CAM) simulations. The EASM predictability is quantitatively determined using the nonlinear local Lyapunov exponent (NLLE) method. The EASM predictability limit under El Niño forcing is longer than that for La Niña forcing. Two monsoon indices are used to measure the EASM, the predictability limits of which perform differently because of their particular definitions. However, the asymmetric response of EASM predictability to El Niño and La Niña can be verified using observational data and model experiments.
著者
Hirofumi SUGAWARA Ryoko ODA Naoko SEINO
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-010, (Released:2017-12-21)
被引用文献数
1

Does the cities enhance precipitation? It is an unsettled question and the comprehensive answer has not been archived for it. This study focuses on the urban heat excess and evaluates its influence on atmospheric instability which is the background condition for the convective precipitation. A simple approach was developed that involved calculating the daytime evolution of the mixed layer over homogeneous ground surface. Calculations were based on the ensemble average of observations. The convective available potential energy (CAPE) was evaluated for both urban and rural land cover. Urban heat excess, which was 200 W m-2 higher in the urban than rural area, increased CAPE by 75 % comparing to the rural CAPE of 513 J kg-1. Results show that cities could cause favorable stratification of the atmosphere for convective precipitation.
著者
KAWASE Hiroaki SASAI Takahiro YAMAZAKI Takeshi ITO Rui DAIRAKU Koji SUGIMOTO Shiori SASAKI Hidetaka MURATA Akihiko NOSAKA Masaya
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-022, (Released:2018-01-30)

Geographical distributions of heavy snowfall, especially in the Pacific Ocean side of Japan, have not been elucidated due to low occurrence frequency of heavy snowfall and limited number of snow observation points. This study investigates the characteristics of synoptic conditions for heavy daily snowfall from western to northeastern Japan in the present climate, analyzing high-resolution regional climate ensemble experiments with 5-km grid spacing. The Japanese 55-year Reanalysis (JRA-55) and the 10-ensemble members of the database for Policy Decision making for Future climate change (d4PDF) historical experiments are applied to the lateral boundary conditions of the regional climate model. Dynamical downscaling using d4PDF (d4PDF-DS) enables us to evaluate much heavier snowfall events than those simulated by dynamical downscaling using JRA-55 (JRA55-DS). Over the Sea of Japan side, heavy snowfall occurs due to cold air outbreaks, while over the Pacific Ocean side, heavy snowfall is brought by extratropical cyclones passing along the Pacific Ocean coast. A comparison between JRA55-DS and d4PDF-DS indicates that heavier snowfall can occur due to more developed extratropical cyclones and enhanced cold air damming in the Tokyo metropolitan area. The geographical distributions of extremely heavy snowfall are different between two typical synoptic conditions, i.e., cold air outbreaks and extratropical cyclones. The difference is much clearer in the extremely heavy snowfall events than in all snowfall events. Heavy daily snowfall occurs in January and February on the Pacific Ocean side, in December and January on the Sea of Japan side, and in November and March in high mountainous areas. Saturated water vapor pressure is largest around 0 ℃ under the snowing conditions. Synoptic conditions from late fall to winter are closely related to preferable conditions for heavy snowfall over the mountainous areas where the surface air temperature is much less than 0 ℃ in the heavy snowfall events.
著者
Shiori Sugimoto Rui Ito Koji Dairaku Hiroaki Kawase Hidetaka Sasaki Shingo Watanabe Yasuko Okada Sho Kawazoe Takeshi Yamazaki Takahiro Sasai
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.46-51, 2018 (Released:2018-04-01)
参考文献数
32
被引用文献数
1

To evaluate the influence of spatial resolution in numerical simulations on the duration of consecutive dry days (CDDs) and near-surface temperature over the central mountains in Japan, a regional climate model was used to conduct two experiments with horizontal resolutions of 5 and 20 km. Compared with observations, the spatial and temporal features of the CDDs were simulated well in the 5 km experiment, whereas in the 20 km simulation they were overestimated over the mountains and underestimated in the surrounding regions. The accuracy in the simulated CDDs affected the near-surface temperature in the model. In years with a difference of more than five days in the CDDs between the 5 and 20 km experiments, near-surface temperatures over the mountains were 0.2-0.3 K lower in the 5 km simulation compared with the 20 km simulation. This was due to the lower number of CDDs in 5 km simulation causing active cloud convection and reduced net radiation at the ground, resulting from a large decrease in the solar radiation at the ground. In addition, a land surface wetness controls a spatial heterogeneity of temperature difference between two experiments.
著者
Chung-Chuan YANG Chun-Chieh WU Kevin K. W. CHEUNG
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-009, (Released:2017-12-15)

The steering flow analysis based on potential vorticity (PV) diagnosis is used to examine the reasons why the National Centers for Environmental Prediction Global Forecast System (NCEP-GFS) model showed large track forecast errors with over-recurving movement in Typhoon Fengshen (2008). In particular, two forecasts initialized at 0000 UTC 19 and 20 June 2008 are demonstrated in this study. The deep-layer-mean (DLM) steering flow between 925 and 300 hPa with tropical cyclone components filtered out is directed to the west or northwest in the analysis field, which can account for the continuous westward and northwestward movement in the best track. However, the DLM steering flow is shown more toward the north in the forecast fields. Four distinct PV features associated with the corresponding subtropical high, monsoon trough, continental high, and midlatitude trough are identified to diagnose their balanced steering flows around the storm. The result based on PV analysis indicates that the reduced westward steering flow in the forecast field is mainly attributed to the subtropical high which is over-predicted to extend southwestward, as well as the continental high with underestimated coverage, as characterized by the geopotential height at 500 hPa. The steering flow associated with the monsoon trough plays an essential role while Typhoon Fengshen (2008) experiences northward recurvature in both analysis and forecast fields. Therefore the associated reduced westward steering flow in the NCEP-GFS model leads to the over-recurvature of Fengshen.
著者
Teruyuki KATO
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-008, (Released:2017-12-08)

This study investigated the representative height of low-level water vapor field that can be used to examine the occurrence possibility of heavy rainfall in East Asia. First, cloud base heights (CBHs) of moist convection were statistically examined by performing simulations with a 1-km-resolution numerical model during April–August 2008, with a focus on Kyushu and Shikoku Islands, western Japan. CBHs of moist convection with strong updrafts were simulated mainly around 500 and 300 m heights above sea level over land and over the ocean, respectively. This result indicates that low-level humid air below a height of 500 m is very important for the initiation of strong moist convection. Moreover, the equivalent potential temperature θe at the CBHs was examined to clarify θe values of lifted air parcels initiating cumulonimbus development. This result showed that below the CBHs, θe was usually around 355 K. Next, given these results for the CBHs, θe at 500 m height from 10-km-resolution objective analysis data was statistically compared with θe at various heights and pressure levels over the ocean south of 35 °N in East Asia during June–September 2008. These comparisons showed that analyses at the 850-hPa level could not represent the low-level water vapor field, while the θe field at 850 hPa in the Baiu season was strongly influenced by convective activity over the Baiu frontal zone. The θ e field at 925 hPa also could not adequately represent the low-level water vapor field, but the difference in θ e between heights of 250 and 500 m was very small. Because high θ e layers must have some thickness, data at 500 m height can be considered representative of the low-level water vapor field in analyses examining the initiation of moist convection leading to heavy rainfall.
著者
Hironori IWAI Shoken ISHII Seiji KAWAMURA Eiichi SATO Kenichi KUSUNOKI
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96A, pp.3-23, 2018 (Released:2018-02-19)
参考文献数
61

During the Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities (TOMACS), many isolated convective storms developed in the southern Kanto Plain on August 17, 2012. The aim of this study was to clarify the dynamics leading to the convection initiation of one of them using different remote sensing instruments. Before the convection initiation, a southeasterly flow transported water vapor inland from Tokyo Bay and the well-mixed and a cumulus-cloud-topped convective boundary layer developed. A convergence line in the form of a sea breeze front (SBF) also moved inland from Tokyo Bay. A near-surface air parcel was lifted to its lifting condensation level (LCL) by an updraft in a convergence zone with a 3 km horizontal scale, which formed the west edge of the convergence line. The saturated air parcel at the LCL was then lifted to its level of free convection (LFC) by the updrafts associated with thermals below the cumulus cloud base. A Ku-band radar detected the first echo of hydrometeors about 6 minutes after the air parcel reached its LFC, then the convective cell developed rapidly. When an SBF arriving from Sagami Bay passed under the cell, the updraft over the nose of the SBF triggered a new precipitation cell, but no intensification of the preexisting cell was observed.
著者
Yoshihito SETO Hitoshi YOKOYAMA Tsuyoshi NAKATANI Haruo ANDO Nobumitsu TSUNEMATSU Yoshinori SHOJI Kenichi KUSUNOKI Masaya NAKAYAMA Yuto SAITOH Hideo TAKAHASHI
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96A, pp.35-49, 2018 (Released:2018-02-19)
参考文献数
16

The relationships between the occurrence of intense rainfall and the convergence of surface winds and water vapor concentration for typical heavy-rainfall cases were examined using data from July to August in 2011-2013, obtained from high-density meteorological observations in Tokyo, Japan. Additionally, the temporal variations in wind convergence and water vapor between days with and without heavy rainfall events were compared. Corresponding to heavy-rainfall areas, the convergence of surface winds tended to increase for several tens of minutes prior to the heavy rainfall. The peak of convergence was observed 10-30 min before the heavy-rainfall occurrence, and convergence continued to increase for approximately 30 min until the convergence peak time. Around the heavy-rainfall area, the increase in the water vapor concentration index coincided with the increase in convergence. From these results, by monitoring the temporal variations and distributions of these parameters using a high-density observation network, it should be possible to predict the occurrence of heavy rainfall rapidly and accurately.
著者
Shin-ichi SUZUKI Takeshi MAESAKA Koyuru IWANAMI Shingo SHIMIZU Kaori KIEDA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96A, pp.25-33, 2018 (Released:2018-02-19)
参考文献数
20

X-band dual-polarization (multi-parameter) radars were used to observe a supercell storm that generated an F3 tornado in Ibaraki Prefecture, Japan on 6 May 2012. The observed data collected for this storm clearly exhibited the typical polarimetric features of a supercell storm, such as the ZDR (differential reflectivity) arc, ZDR column, and the KDP (specific differential phase) column, as well as their time evolution. The ZDR arc emerged at 10 to 15 min before the tornadogenesis. The ZDR column appeared approximately 1 h before the formation of the ZDR arc and was intermittent until tornadogenesis. As the ZDR arc appeared, the column became tall and stable and lasted until the dissipation of the tornado. These ZDR signatures of the supercell storm persisted for approximately half an hour.
著者
Shusuke NISHIMOTO Hirotada KANEHISA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96, no.1, pp.5-24, 2018 (Released:2018-02-08)
参考文献数
17
被引用文献数
1

We analytically solve a forced linear problem of vortex Rossby waves (VRWs) associated with the vortex resiliency of tropical cyclones. We consider VRWs on a basic barotropic axisymmetric vortex. VRWs, which are initially absent, are successively forced by a vertically sheared unidirectional environmental flow. The problem is formulated in the quasigeostrophic equations, linearized about the basic vortex. The basic potential vorticity (PV) is assumed to be piecewise constant in the radial direction so that the problem can be analytically solved. The obtained solutions show the following. When the vertical interaction (VI) between the VRWs is weak, a stationary mode (called the pseudo mode) is selectively forced and grows linearly in time, and the vortex is eventually destroyed by the environmental vertical shear. When the VI is moderate, an almost form-preserving quasi-mode (simply called the quasi mode) of the VRWs appears and precesses about a downshear-left tilt equilibrium (DSLTE). The precession does not grow and the vortex maintains vertical coherence. In particular, in the presence of the inward radial gradient of the basic PV at the critical radius, the precession damps and the quasi mode eventually approaches the DSLTE. When the VI is strong, the VRWs are simply advected by the basic angular velocity at each radius to be axisymmetrized to some extent about the DSLTE, and the vortex maintains vertical coherence. To examine the diabatic effect near the eyewall, the solution with the basic buoyancy frequency being small in the central region and large in the outer region is also obtained. The small and large buoyancy frequencies imply strong and weak VIs, respectively. The central VRWs are simply advected by the basic vortex flow. While, the outer VRWs precess about the DSLTE just like a quasi mode, and the vortex maintains vertical coherence.
著者
井上 長太郎
出版者
METEOROLOGICAL SOCIETY OF JAPAN
雑誌
氣象集誌. 第1輯 (ISSN:00261165)
巻号頁・発行日
vol.16, no.4, pp.154-174, 1897
著者
馬塲 信倫
出版者
METEOROLOGICAL SOCIETY OF JAPAN
雑誌
氣象集誌. 第1輯 (ISSN:00261165)
巻号頁・発行日
vol.10, no.10, pp.505-516, 1891