- 著者
-
岡村 行信
- 出版者
- 公益社団法人 日本地震学会
- 雑誌
- 地震 第2輯 (ISSN:00371114)
- 巻号頁・発行日
- vol.71, pp.185-199, 2019-03-10 (Released:2019-04-09)
- 参考文献数
- 87
- 被引用文献数
-
2
5
An active fault map of Japan Sea was compiled based mainly on bathymetric data and seismic profiles that cover shelves to slopes between 4 to 150 km from the coasts of Japan Islands. The seismic profiles using air guns as seismic sources revealed active faults that have slipped during the last 104 to 106 years. In addition, high-resolution seismic profiles using a boomer as the seismic source were obtained along seaward extensions of onshore active faults in shallow sea areas less than 150 m below sea-level, and activity of the faults during the last 104 years was identified. In northeastern Japan Sea, to the northeast of the Noto Peninsula, many reverse faults accompanying large hanging wall anticlines (>750 m uplift) are concentrated in two N-S trending fault zones along the Okushiri and Sado ridges. Earthquakes larger than M 7.5 in 1940, 1964, 1983 and 1993 occurred in these fault belts. Three NE-SW trending fault zones cross the N-S trending fault zones and disrupt the structure of the N-S fault zones. In the offshore area from the Noto Peninsula to the Tango Peninsula, active reverse faults accompanying smaller hanging anticlines (<375 m uplift) are identified in a zone trending subparallel to the coasts. In addition, NW-SE to N-S trending strike-slip and reverse faults extend from onshore to offshore. In the offshore area to the west of the Tango Peninsula, E-W and NW-SE trending active strike-slip faults are identified. The former faults developed in about 40 km wide zones sub-parallel to the coast, and the later faults are located landward of the E-W trending fault zones. Some of the later faults are extensions of onshore active faults. Unknown active faults may exist in shallow sea area along coasts where have not been thoroughly investigated. Displacements of the faults during the last 106 years are large in northeastern Japan Sea and decrease to the southwest, while slip rates of these faults during the last 104 years are inferred to have smaller differences. These faults have the potential of future earthquakes, while there is not enough data to evaluate the activities of these faults.