著者
津久井 雅志
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.56, no.2-3, pp.65-87, 2011-06-30 (Released:2017-03-20)
参考文献数
27

The 1783 activity of Asama volcano was reviewed from May to the end of the year based on 166 old documents, including those recorded at a distance. 1. Prior to the 1783 Asama eruption, the level of magma head ascended at Kama-yama crater-pit. Moderately explosive eruptions commenced on May 9, and repeatedly blew off the plugged magma. 2. Depending on the wind direction, ash fell N, NNE, and NE of the crater including Sado Island, Tohoku and Kanto districts. From August 3 to 5, climactic plinian eruption dispersed pyroclastic materials. Distributions of 8 tephra- fall units were presented. 3. The timing of rumbling and quakes at distant places farther than 100km from the crater well correspond with explosive events witnessed by neighbors of the volcano. 4. Duration of a single eruptive event rarely exceed 6 hours. It was true even during the culminating plinian stage from Aug. 3 to 5, 1783. The eruption was so violent in this stage that huge blocks larger than 10m were thrown from Kama-yama crater. 5. Documents concerning with Kambara pyroclastic flow and subsequent debris avalanche occurred on August 5, suggested that an explosion on the northern flank triggered collapse of northern sector. The event occurred at about 08:00 to 08:30am, which is 90 to 120 minutes earlier than estimations appear in previous work. 6. Small and less frequent eruptions continued until January 15, 1784.
著者
及川 輝樹 筒井 正明 大學 康宏 伊藤 順一
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.57, no.4, pp.199-218, 2012-12-28 (Released:2017-03-20)
参考文献数
65

Shinmoedake (Kyushu, Japan), which is one of the Kirishima Volcanoes, experienced several small eruptions in 2010, finally culminating in a sub-plinian eruption on January 26-27, 2011. After this sub-plinian phase, the eruption style shifts to the phase of vulcanian eruption or ash emission. This volcanic activity is still occurring. We here summarize the eruption history of Shinmoedake during the Edo period on the basis of historical records. The eruptions of Shinmoedake during the Edo period occurred in AD 1716-1717 (Kyoho eruption) and AD 1822 (the 4th year of Bunsei eruption). The Kyoho eruption, which was a large-scale (total amount of tephra: 2×1011 kg) eruption, is divided into the following seven stages. Stage 1 (Apr. 10, 1716 to May 7, 1716): small eruptions occurred over two months; Stage 2 (Sep. 26, 1716): falling ash first observed at the foot of Shinmoedake; Stage 3 (Nov. 9 to 10, 1716): the first large eruption was observed, with pumice falling over a wide area; Stage 4 (Dec. 4 to 6, 1716): small eruptions; Stage 5 (Feb. 9 to 20, 1717): the second pumice fall eruption, with an intermittent ash fall eruption thereafter; Stage 6 (Mar. 3, Mar. 8, Mar 13, Apr. 8, 1717): ash fall eruptions; Stage 7 (Sep. 9, 1717): the last ash fall eruption. These eruptions, which continued intermittently over 17 months, were characterized by multiple repetitions of a large eruption. Based on the results of a comparison between the Kyoho eruption and the 2011 eruption, the eruptions from March 30, 2010 to January 26, 2011, were similar to Stages 1 to 3 of the Kyoho eruption; the eruptions after January 26, 2011, were similar to Stages 5 to 6 of the Kyoho eruption. In addition, the relatively large eruption events of Stages 3 and 5 of the Kyoho eruption and the January 26-27, 2011, eruption began without any noticeable precursors. The eruption in the 4th year of Bunsei (AD 1822) was a small eruption that lasted less than a day. The recent eruption sequences, which were also similar to the Edo period eruptions, are divided into a small-scale eruption (the 1959 eruption) and a large-scale eruption (the 2011 eruption). The eruption duration time of the small-scale (total amount of tephra: < 1010 kg) eruption was less than a day. The eruption duration time of the large-scale (total amount of tephra: > 1010 kg) eruption could be a few months or years. Both eruption sequences began with a small eruption. A large-scale eruption can occur a few months after the start of the eruption sequence. This is an important turning point in the eruption sequence of Shinmoedake.
著者
高橋 正樹
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.40, no.1, pp.33-42, 1995-03-10 (Released:2017-03-20)
参考文献数
22
被引用文献数
5

There is no positive correlation between the long-term eruption rate of large-scale felsic volcanism and its discharge volume of a single eruptive episode. This means that the storage of voluminous felsic magma at high-level in the crust is caused not by high magma production rate but by continuous accumulation of magma during a long repose time, if the long-term eruption rate reflects the averaged magma production rate. If the cruslal defomation is weak, the magma chamber could be stable in the crust; it is favorable for efficient accumulation of voluminous magma. In fact, the large-volume felsic volcanism occurs exclusively in the region of low crustal strain rate. The low crustal strain rate is considered to be essential for the formation of large-scale felsic volcanism. The large-volume felsic volcanic activity is present in the compressional tectonic stress field as well as in the extensional one; the difference in arrangement of principal stress axes is not related to the occurrence of voluminous felsic volcanism.
著者
中村 一明
出版者
特定非営利活動法人 日本火山学会
雑誌
火山.第2集 (ISSN:04534360)
巻号頁・発行日
vol.20, pp.229-240, 1975
被引用文献数
14

Volcanoes are generally classified into monogenetic and polygenetic types. Monogenetic volcanoes erupt only once to form smaller volcanoes, such as maars, pyroclastic cones and lava domes. Polygenetic volcanoes erupt repeatedly from the same general vents (summit or main crater) for up to 10<sup>5</sup> years to form larger volcanoes such as strato-volcanoes (composite volcanoes of Macdonald, 1972) and shield volcanoes of Hawaiian type. Monogenetic volcanoes tend to occur in clusters as flank and post-caldera cones. Some of the clusters are however, independent of polygenetic volcanoes and appear to be equivalent to them. The essential part of the conduit of a monogenetic volcano is inferred to be a simple dike, intruded into a newly formed crack, whereas a long endured pipe-shaped conduit may exist under a polygenetic volcano. The common occurrence of xenoliths in the eruptive products of monogenetic volcanoes may be related to this difference. Various lines of evidence, indicating the existence, depth, shape, volume and internal structure, of magma reservoirs are tabulated. A shallow magma reservoir appears to exist beneath polygenetic volcanoes with one to one correspondence, which is not the case for monogenetic volcanoes. Most flank volcanoes are monogenetic, thus indicating dikes within the polygenetic volcanic edifice. Dike formation is understood as a magma version of hydraulic fracturing. For the dike to intrude and propagate, would require either the increase of differential stress due to a decrease of minimum compression or increase of pore pressure over the sum of the minimum compression and the tensile strength of the rocks. Earthquakes are understood as the generation of elastic waves associated with an acute release of tectonic stress due to faulting. Accumulation of tectonic stress and strain prior to earthquakes is, then, a necessary part of earthquake phenomena in a broad sense, as well as their release after the event. Based on the above-stated understanding, possible mechanical correlations between volcanic eruptions and earthquake occurrences have been studied. Contractional strain around the magma reservoir can cause the squeezing up of magma within an open conduit causing a summit eruption on the one hand, and dike formation resulting in a flank eruption through the increase of pore pressure, on the other. Second boiling triggered by both the magmatic pressure decrease caused by dilatational strain and the dynamic excitation due to seismic waves might have the same effect as contraction. Decrease of minimum compression causing the increase of differential stress leading to dike formation will also contribute to the liklihood of flank eruptions. Both volcanic eruptions and earthquake occurrences can precede each other depending on geographical location in terms of faulting-related stress-strain changes which are calculated by the fault model of earthquakes. Actual possible examples of volcanic eruptions and earthquakes which are allegedly mechanically related are given. In order to demonstrate which mechanism is responsible for the correlation of the two phenomena, continuous strain measurement on and around volcanoes is necessary together with the observation of changes in the level of magma in crater bottoms.
著者
伊藤 英之 脇山 勘治 三宅 康幸 林 信太郎 古川 治郎 井上 昭二
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.50, no.6, pp.427-440, 2005
参考文献数
27

The Yakedake volcano is located in the southern part of the northern Japan Alps, central Japan. Yakedake volcanic hazard map was published in March 2002, and in June 2002, it was distributed to the inhabitants of Kamitakara village, Gifu prefecture, where is located 4-20km west from the volcano. In January 2003, the questionnaire survey was carried out on the inhabitants in order to know their attitudes to the volcanic hazard map and the level of their understanding of the contents of the hazard map. The Kamitakara village office distributed the questionnaires to 1,102 families through the headman of each ward, the headman collected 802 answers. The results of analysis were as follows. 89% of the respondents knew the existence of the hazard map and 35% read it well, but about 11% have not read the map at all. The elders have a tendency to have deeper understanding of the hazard map than younger ones, especially in elders who have experiences to meet some kinds of natural hazards. And the people who once attended the explanatory meeting of the hazard map, which was held for the residents living inside the disaster-prone area four times after the publication of the hazard map, also tend to have more proper understandings. The people who are engaged to the tourism give more attention to the volcanic hazard than others. The respondents have strong tendency to require more knowledge about the volcanic activities and hazards. We can say that the further activities by scientists, engineers and administrative officers are expected in order to establish an informed consent, that is, there should be a decision-making by inhabitants themselves and support by officers in charge with detailed explanations.
著者
辻 智大 岸本 博志 藤田 浩司 中村 千怜 長田 朋大 木村 一成 古澤 明 大西 耕造 西坂 直樹 池田 倫治 太田 岳洋 福岡 仁至
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.68, no.3, pp.129-160, 2023-09-30 (Released:2023-11-02)
参考文献数
49

Kuju volcano, located within Beppu-Shimabara graben central Kyushu, Southwest Japan, has been active in the recent 200,000 years. The 54 ka Handa eruption, as large as VEI 5 or 6 and the largest one of the volcano, released large-scale pyroclastic flow deposits (Handa pfd; Kj-Hd) and a wide-spread tephra (Kj-D ash and Kj-P1 pumice fall deposits) that has been reported at more than 500 km from the source. The stratigraphic relationships among the deposits from the Handa eruption are important for volcanology and disaster prevention, and have been studied in various studies, but there is no consensus on the stratigraphy. In this study, we examined the stratigraphic relationships and the eruption history based on the stratigraphic and petrographic studies around Kuju volcano, as well as on Shikoku and Honshu Islands. As the results, the stratigraphic relationships were revealed as follows. 1) The pumice fall deposit, that has been named Kj-Yu, was previously included in Kj-D ash layers, but is revealed to be a much older ejecta than Kj-D ash, along with the tephras newly named Kj-Tb1 and 2. 2) The clay-rich layer just below Kj-D was previously considered to be soil, but it contains a large number of volcanic ash particles so that it is defined as Kj-Y ash layer. 3) Three light brown fine ash layers, newly named Kj-D-U2, 4 and 6, sandwich between the blue grey sandy ash layers i.e. Kj-D-U1, 3, 5 and 7, are revealed to be the co-ignimbrite ash derived from Kj-Hd 1, 2 and 3 pfd, respectively. It suggests that the Kj-Hd1, 2 and 3 pfd are interbedded with Kj-D-U ash layers. 4) Kj-P1 overlies on Kj-D-U7 ash layer that mantled the reworked deposit of Kj-Hd3. 5) Kj-P1 is divided into lower and upper units based on the grain-size analysis, petrography, the chemical composition of glass shards and the isopach maps. Kj-S pfd was formed in the same time as the upper unit. Based on the results, the eruption history is assumed as follows. Pre-Handa eruption: the activity was low and the small-scale explosive eruptions that had released the pumice and volcanic fragments in loam (Kj-Y), followed by a relatively large explosive eruption that had formed Kj-AL. Early phase: the eruption started with phreatic eruption, sub-plinian eruption that deposited the lower unit of Kj-D ash. Subsequently, the eruption changed to vulcanian eruptions that ejected Kj-D-U. This eruption continued for a long period time. During the time, three large-scale pyroclastic flow eruptions happened and has formed Kj-Hd1, 2 and 3. Their co-ignimbrite ashes generated from the Kj-Hd pfds were deposited as Kj-D-U2, 4 and 6. Lahar were generated after Kj-Hd2 and 3 deposition. This phase was terminated by the deposition of Kj-D-U7 ash. Late phase: the plinian plumes occurred twice and deposited lower and upper lalyers of Kj-P1. The second one is the largest plinian eruption in the whole volcano history, with a large umbrella plume producing a wide-spread tephra at more than 500 km from the source and an intraplinian pyroclastic flow (Kj-S).
著者
及川 輝樹 谷 健一郎
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.65, no.3, pp.83-87, 2020-09-30 (Released:2020-10-13)
参考文献数
18

The activity of Toshima Volcano, Izu Islands in Japan, is divided into two stages: younger (the lava flows of parasitic craters) and older (the main stratovolcano) stages. The 14C age of “Kajiana” crater lava, the earliest lava of the younger stage, was approximately 11 ka (cal BP). Based on the results of radiocarbon dating and topographic analysis, we conclude that all three magmatic eruptions of the younger stage of Toshima Volcano occurred during the Holocene.
著者
宮地 直道 富樫 茂子 千葉 達朗
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.49, no.5, pp.237-248, 2004-10-29 (Released:2017-03-20)
参考文献数
34
被引用文献数
5

A large-scale collapse occurred at the eastern slope of Fuji volcano about 2900 years ago, based on calibrated 14C age of a wood sample collected in the resulting debris avalanche deposit. The collapsed slide deposit, called “Gotemba debris avalanche deposit” (Goda), is distributed on the eastern foot of the volcano covering an area of more than 53 km2 The source amphitheater is not preserved because it became covered by younger tephra erupted from the summit crater. This avalanche deposit is overlain by the “Gotemba, mudflow deposits” (Gomf) emplaced repeatedly after the avalanche. Some now units of the Goda and Gomf entered pre-existing rivers and were finally emplaced as fluvial deposits. The Goda is composed of debris-avalanche blocks, showing jigsaw cracks, along with smaller blocks ranging from several tens of centimeters up to l m in diameter. The debris-avalanche matrix is a mixture of smaller nieces of blocks and ash-sized materials due to mainly shearing and fragmentation of large blocks. Igneous rocks include fresh and altered gray basaltic lava, weathered tephra including red scoria and white clay. Petrographical and geochemical data indicate that most blocks were derived from the Older Fuji volcano. The volumes of the Goda and Gomf are about l.05km^3 and 0.71km^3 respectively, based on presently available geological and borehole data. Since the blocks of Goda are composed mostly of the products of the Older Fuji volcano and the older stage lavas of Younger Fuji volcano do not extend to the eastern foot of Fuji volcano, a bulge of Older Fuji volcano must have existed in the eastern flank of Fuji volcano preventing the older stage lavas to now to the east. This bulge collapsed in the form of three blocks from the foot of the mountain. The abundance of hydrothermally altered deposits in the Goda and the absence of fresh volcanic products within the Goda suggest its origin as a rupture inside the altered deposits possibly triggered by a large earthquake or phreatic eruption.
著者
林 信太郎
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.43, no.4, pp.207-212, 1998-08-31 (Released:2017-03-20)
参考文献数
19

Kampu volcano is a small stratovolcano situated at the central part of Oga Peninsula, Akita Prefecture. In 1810, an earthquake as large as M 6.5 occurred near this volcano. Yoshimasa Satake, the lord of the Akita clan, wrote two official reports to the Tokugawa shogunate. They included eruption records of Kampu volcano: “Yamayake” and “Yamayakekuzure”. These words were usually used for the eruption during Edo period and mean that the mountain was firing. Several reliable documents, which was written at Oga Peninsula included no eruption record. In addition, there is no eruption record in the note of Yoshimasa Satake, which is thought to have used for making the two official reports. It is concluded that the eruption descriptions of 1810 Kampu is false and created by Yoshimasa Satake at Akita clan office at Edo (Tokyo). The false eruption might have been created to make the exaggerated damage report of earthquake.
著者
小山 真人
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.43, no.5, pp.349-371, 1998
参考文献数
53
被引用文献数
3

Reevaluation of places, type, magnitude, and influences of the 800-802 A.D. eruption (Enryaku eruption) of Fuji Volcano, Japan, was made through tephrochronology and analyses of historical records. The Nishi Kofuji fissure on the northeastern slope is newly recognized as a crater of the 802 A.D. flank eruption. The Nishi Kofuji fissure ejected fallout scoria toward ENE and lava flows, which can be correlated with Takamarubi and Hinokimarubi 11 Lavas on the northeastern foot. The Tenjinyama-lgatonoyama fissure on the northwestern slope probably erupted during the Enryaku eruption and ejected fallout scoria and lava fiows. A series of historical documents and paintings (Miyashita documents), which are unauthorized, personal records and are regarded to be unreliable by many historians, includes many detailed descriptions of paleogeogra-phy around Fuji Volcano and of the Enryaku eruption. Although some of the descriptions were exaggerated and conflict with geological observations, some of them are concordant with geologic data. The Enryaku eruption probably gave serious damages to ancient traffic routes particularly on the northwestern-northeastern foot of Fuji Volcano. The Gotenba area, which is located on the eastern foot, was also damaged by thin ash-fall and probably by lahars. This caused a temporal, southward relocation of the offical trafiic route, which had passed through the Gotenba area.
著者
杉下 七海 常松 佳恵 伴 雅雄 佐々木 寿
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.67, no.1, pp.77-89, 2022-03-31 (Released:2022-04-26)
参考文献数
27

Ballistic projectiles are large pyroclasts (>0.1 m in diameter) traveling through the air without being affected by the flow of gas. This phenomenon is harmful (and potentially fatal) when a volcanic eruption suddenly occurs as the ballistic velocity is quite high, sometimes reaching several hundred meters per second. Therefore, it is important to simulate the trajectory of ballistic projectiles in an affected region. We have estimated the ejection conditions of the 1895 Zao eruption by visually comparing simulated results using a numerical model called “Ballista” to actual block distributions obtained from field observations and aerial photographs. Interestingly, around Goshikidake (northeast of the Okama crater) the farther blocks were from the crater, the larger the block size was. The ejection direction was estimated to be 120° from the north (southeast direction), because the deposit blocks are spatially dense in this direction. The ejection angle was estimated to be 10°, and the ejection velocity was estimated to be 110-120 m/s. The estimated eruption velocity of the 1895 Zao eruption was similar to that of the 2014 Ontake eruption and within the range of small vulcanian eruptions. Although we often worry that a magmatic eruption will occur after a phreatic eruption, it is also possible that a vigorous block emission will occur with a considerably high ejection velocity during a phreatic eruption.
著者
田島 靖久 及川 純 小林 哲夫 安田 敦
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.67, no.1, pp.45-68, 2022-03-31 (Released:2022-04-26)
参考文献数
105

Shinmoedake is the compound volcano in Kirishima Volcano and the most active volcano in Japan, having recorded frequent magmatic eruptions during 1716-1717, 2011, and 2018. The three geological active periods of Shinmoedake in the last 8 ka were recorded by a geological survey (Tajima et al., 2013a). The geological eruptive time category of Shinmoedake is divided into long-term, middle-term, and short-term activities. Short-term activity is captured by monitoring and covers a period of several years or more. The magma eruption rates during middle-term activities were estimated to be several times higher than the long-term magma eruption rate. Moreover, the centers of magma eruptions within each middle-term period had stabilized in terms of location. Additionally, the magma eruption rates during each period of middle-term activity were not constant. Therefore, knowledge regarding the variation in the magma production of Shinmoedake during geologically short-term, middle-term, and long-term activities is required to understand its development and plumbing system. In this paper, we compile recent geological investigation results of Shinmoedake and propose a rational conceptual model of its current state supported by petrological and geophysical data. A well-known conceptual plumbing model of Kirishima Volcano was proposed by Kagiyama et al. (1997). The seismic attenuation spot (reservoir A) is located at a depth of 4-5 km below Karakunidake (Oikawa et al., 1994), and a wide P-wave velocity anomaly area (reservoir W) is situated at a depth of 10-15 km below Kirishima Volcano (Yamamoto and Ida, 1994). Recently, geophysical observations have indicated that magma was supplied from a depth of 8-10 km (reservoir B) to the western area of Shinmoedake during the 2011 magmatic eruption (Nakao et al., 2013). In addition, petrological analysis suggested two different sources of silicic magma from a level of reservoir A and mafic magma from a level of reservoir B (Suzuki et al., 2013a). Therefore, reservoir B might have been connected to reservoir A, where magma mixing occurred during the 2011 eruption. Furthermore, analysis of the deep low-frequency (DLF) earthquake of the 2011 eruption of Shinmoedake revealed that the DLF activities at a depth of 20-27 km (reservoir L1) in the eastern part of Kirishima Volcano were involved (Kurihara et al., 2019). Reservoirs L1 and B may also be connected. These results support the increasing activities of Kirishima Volcano revealed by the geological survey (Tajima et al., 2013a). It is concluded that the complex magma plumbing system of Shinmoedake may cause different magma eruption rates during periods of middle- and long-term activities.
著者
和田 穣隆 南川 実咲
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.66, no.4, pp.281-291, 2021-12-31 (Released:2022-02-22)
参考文献数
23

Surface structures of magmatic dikes reflect dike emplacement processes. Excellent exposures of the Miocene Hashigui-iwa dike (Wakayama, SW Japan) exhibit well-preserved surface structures including drag folds, scour marks, extension fractures, and cusps. Scour marks are evident on the drag-folded surface, and are in turn cut by extension fractures. Inside the cusps, which are clefts formed by adjacent convex margin irregularities, the drag-folded margins enclose mudstone lenses. Based on our field observations, we infer an emplacement mechanism whereby magma fingers ascended through moderately consolidated host sediments, forming scour marks on chilled margins and causing repeated drag folding. Continued magma flux allowed the fingers to expand, generating extension fractures on the chilled margins. Ultimately, the fingers coalesced, forming the now-preserved cusp structures.