著者
新井 仁之
出版者
一般社団法人 日本数学会
雑誌
数学 (ISSN:0039470X)
巻号頁・発行日
vol.50, no.1, pp.29-55, 1998-01-30 (Released:2008-12-25)
参考文献数
59
著者
小田 忠雄 高木 泉 石田 正典 西川 青季 砂田 利一 森田 康夫 板東 重稔 新井 仁之 堀田 良之
出版者
東北大学
雑誌
基盤研究(A)
巻号頁・発行日
1995

本研究の目的および実施計画に沿って,研究代表者,研究分担者および研究協力者は,多様体に関する数理科学的諸問題を次のように研究した.1. トーリック多様体を代数幾何・代数解析・微分幾何の見地から研究し,交差コホモロジー,トーリック多様体への正則写像,トーリック・ファノ多様体の分類および複素微分幾何学的計量に関して新知見を得た.2. 多様体を数論・数論的幾何の見地から研究し,アーベル曲面等の有理点の分布,2次元エタール・コホモロジーに関するテート予想,クリスタル基本群・p進ホッジ理論に関して新知見を得た.3. 非アルキメデス的多様体の代数幾何学的研究を行い,剛性に関する新知見を得た.4. 可微分多様体,リーマン多様体,共形平坦多様体の大域解析的性質,双曲幾何学的性質,基本群の離散群論的性質を研究して数々の新知見を得た.5. 多様体上のラプラシアンやシュレーディンガー作用素のスペクトルの,量子論・準古典解析的研究および数理物理的研究を行うとともに,グラフに関する類似として離散スペクトル幾何に関しても興味深い数々の結果を得た.6. 生物等の形態形成を支配すると考えられる反応拡散方程式等の非線形偏微分方程式系を多様体上で大域的に研究し,安定性に関する新知見を得た.7. ケーラー多様体上のベクトル束の代数的安定性とアインシュタイン・エルミート計量に関する複素幾何学的研究を行い,いくつかの新知見を得た.8. 擬微分作用素・極大作用素・有界線形作用素・作用素環等を実解析・複素解析・フーリエ解析的側面から研究し,数々の新知見を得た.
著者
衣川 雅彦 新井 仁 小笠 剛裕 河西 政次
出版者
The Society of Synthetic Organic Chemistry, Japan
雑誌
有機合成化学協会誌 (ISSN:00379980)
巻号頁・発行日
vol.57, no.5, pp.401-406, 1999-05-01 (Released:2009-11-16)
参考文献数
16
被引用文献数
2 5

A convenient large-scale preparation of the indoloquinone antitumor agent EO9 has been developed. A Nenitzescu reaction has been used to prepare the indole skeleton having all functional groups necessary for its conversion into a key intermediate in a short synthesis of the indoloquinone EO9. Moreover, the hazardous reagent, Fremy's salt was replaced by safer one, [bis (trifluoroacetoxy) iodo] benzene, for oxidation of the 4-aminoindole to the corresponding indoloquinone, and high quality EO9 was easily obtained by choosing acetonitrile as the solvent in the substitution reaction of the methoxy group with ethylenimine to introduce the aziridinyl group into the precursor.
著者
小竹 武 新井 仁之 板東 重稔 伊藤 秀一 高木 泉 加藤 順二 小野 薫
出版者
東北大学
雑誌
一般研究(B)
巻号頁・発行日
1989

多様体上の解析学としての大域解析が包括する研究対象は多岐にわたる。本研究では、種々の偏微分方程式の解構造の研究、力学系、関数微分方程式の摂動と安定性の研究、非線型解析の微分幾何学、数理物理学への応用等、解析学と幾何学、数理物理学との境界領域での研究の進展をはかるとともに、これら研究における解折手段として重要な調和解析および作用素の理論等の深化につとめた。以下、本研究において得られた新たな知見、成果の概要を記す。1. 偏微分方程式論に関するものとして、一般な正値ポテンシャルをもつシュレディンガ-作用素に対する固有値の漸近分布についての結果、およびリ-マン多様体上の熱方程式に対するヴィダ-型一意性定理の証明、更に、楕円型作円用素論の幾何学への対用として、ディラック作用素族の芸変指数についての研究、正則ベクトル束の除去可能特異点についての研究等が挙げられる。2. 力学系の分野では、可積分なハミルトン正準方程式系の特異点近傍での標準型への還元に関する研究、一方、遅れをともなう関数微分方程式に対する大域解の存在、安定性についての研究等がある。3. 非線型解析に関しては、拡散・反応方程式系について解の詳しい幾何学的研究がなされ、パタ-ン形成や将異点発生等について興味ある結界が得られた。4. 調和解析では、強擬凸領域上の〓〓調和関数の境界挙動に関するファトゥ型定理の証明がある。 2、作用素環の順序構造と正則完備化の構造との関係について新しい知見が得られた。5. バ-クマン核の研究では、領域がラインハルト領域のとき、核のトレ-スと境界のチャ-ン・モ-ザ-不変多項式との関係が明確化され、その応用として、複素球の大域的特徴づけが示された。
著者
小谷 元子 塩谷 隆 新井 仁之 熊谷 隆 井関 裕靖 納谷 信 楯 辰哉 石渡 聡
出版者
東北大学
雑誌
基盤研究(A)
巻号頁・発行日
2008

幾何学と確率論の異なる分野の関わりを通じて、これまで扱えなかった特異性のある空間や離散的な空間の幾何学の新たな研究方法を開拓することを目的とし、ランダムウォークの量子版である量子ウォークや、非対称ランダムウォークの長時間挙動の幾何学的理解、ランダム群の固定点性質、Alexandrov空間のBishop-Gromov型の不等式、ランダムグラフの収束性などに関する結果を得て、発表した。