著者
田口 茂 吉田 正俊 西郷 甲矢人 宮園 健吾 谷 淳 田中 彰吾 山下 祐一 西尾 慶之 武内 大 富山 豊
出版者
北海道大学
雑誌
基盤研究(A)
巻号頁・発行日
2020-04-01

「意識とは何か」という問題は、現代において哲学と科学と医療にまたがる大問題である。本研究の目的は、この大問題に、以下の三つの方法を組み合わせてアプローチすることである。①第一に、「現象学」を一つの理論的な核として、哲学・精神医学・神経科学・ロボティクス・数学の密接な学際的共同研究を行う。②第二に、「意識変容」という正常な意識状態からの逸脱に焦点を当て、変容した意識と正常な意識とを対比することにより、意識の本質的特性に迫る。③第三に、「圏論」という数学的理論を用いて、上述の諸研究から浮かび上がる関係論的構造を分析する。これにより、意識研究を一段新しい次元にもたらす新たな理論的枠組みを提起する。
著者
土谷 尚嗣 西郷 甲矢人
出版者
日本認知科学会
雑誌
認知科学 (ISSN:13417924)
巻号頁・発行日
vol.26, no.4, pp.462-477, 2019-12-01 (Released:2020-03-01)
参考文献数
29
被引用文献数
1

One of the biggest mysteries in current science is how subjective experience, or consciousness, arises from objective substance and its physical interactions, such as human brains. Since 1990s, empirical and scientific studies on the relationship between consciousness and brain have advanced massively, especially thanks to neuroscientific approaches. Despite its empirical progress, there remains skeptical philosophers, cognitive scientists, and psychologists, who consider the science of consciousness is impossible,partly because the concept of consciousness is so difficult to define. Due to this difficulty, they argue, scholars who claim that they are empirically researching consciousness even do not know what they themselves are talking about. These skeptics hold that scientific methods cannot be applied to concepts that are not possible to define. In this article, we argue that consciousness is possible to rigorously define in a strict mathematical sense. To build this logic, we introduce category theory, which is a theory developed in mathematics in the latter half of the 20th century. Category theory is a framework originally invented to deal with relationships among objects, in particular between algebra and geometry. In recent years, category theory has been recognized for its potential to be applied to consciousness research. Throughout this paper, we propose several concrete examples of Consciousness Category and, eventually, we conclude that we can apply “Yoneda’s lemma” to Consciousness Category. Yoneda’s lemma, one of the most fundamental and powerful tools in category theory, says, in simple terms,that definitions of any concept is the same as descriptions of all relationships between the concept and the others. This striking viewpoint, which is founded mathematically,provides the validity to the act of defining consciousness through descriptions of relationships. We end with a future perspective; enriching Consciousness Category will provide a common language among researchers who disagree in some aspects of their respective definitions of consciousness. Common language is a necessary component for the big breakthrough to solve the mystery of consciousness.
著者
西郷 甲矢人
出版者
日本認知科学会
雑誌
認知科学 (ISSN:13417924)
巻号頁・発行日
vol.28, no.1, pp.57-69, 2021-03-01 (Released:2021-03-15)
参考文献数
5
被引用文献数
5
著者
森口 佑介 土谷 尚嗣 西郷 甲矢人
出版者
公益社団法人 日本心理学会
雑誌
心理学研究 (ISSN:00215236)
巻号頁・発行日
pp.94.22403, (Released:2023-06-30)
参考文献数
39

One important problem in current cognitive development research is the lack of theory. In this article, therefore, we propose a cognitive development theory based on mathematical structures. Specifically, we first focus on the concept of structure, which is the concept Piaget introduced to cognitive developmental research. Piaget’s theory was mainly inspired by mathematical group and lattice, but many concepts Piaget himself invented (e.g., grouping) were difficult to deal with in a mathematically rigorous manner. Therefore, here, the authors recapture some of the concepts proposed by Piaget in a mathematically understandable form based on the concept of mathematical category, a generalization of the group. Furthermore, we would like to introduce cognitive developmental research on structural concepts since Piaget and suggest directions for future research.
著者
西郷 甲矢人 日髙 昇平 高橋 康介 布山 美慕
出版者
日本認知科学会
雑誌
認知科学 (ISSN:13417924)
巻号頁・発行日
vol.28, no.1, pp.70-83, 2021-03-01 (Released:2021-03-15)
参考文献数
16
被引用文献数
2

The aim of this article is to provide references to cognitive scientists, who are interested in learning category theory and using it in their research. This article consists of the three sections, question-and-answers on category theory, utility of category theory on cognitive science, and tutorial materials. In the question-and-answers on category theory, we answered to questions, with which beginners of category theory may come up. In the utility of category theory on cognitive science, we raised the three items of utility of category theory in building cognitive models. The learning materials share the books, slides, and videos on the web, recommended to start with.
著者
土谷 尚嗣 西郷 甲矢人
出版者
日本認知科学会
雑誌
認知科学 (ISSN:13417924)
巻号頁・発行日
vol.27, no.2, pp.221-225, 2020-06-01 (Released:2020-06-15)
参考文献数
24

In our recent essay [Tsuchiya, N. & Saigo, H. (2019). Understanding consciousness through category theory, Cognitive Studies: Bulletin of the Japanese Cognitive Science Society, 26, 462–477], we provided a general introduction of category theory to consciousness researchers. Further, we also provided our tentative theoretical sketches on our latest ideas on how to apply tools in category theory into consciousness research. In particular, we discussed how we can propose categories of level of consciousness and categories of contents of consciousness. We also speculated what (if any) these efforts will bring into consciousness research. In this short piece, we will address several comments we received on our essay in the same issue from six experts, providing some clarification on three issues: 1) significance of our proposal of a novel viewpoint to enrich what it means to define consciousness, 2) possibility of category theoretical interpretation of consciousness,and 3) understanding of consciousness through the enriched category theoretical framework.
著者
布山 美慕 西郷 甲矢人
出版者
日本認知科学会
雑誌
認知科学 (ISSN:13417924)
巻号頁・発行日
vol.29, no.1, pp.100-119, 2022-03-01 (Released:2022-03-15)
参考文献数
40

When readers comprehend a text, they can have multiple simultaneous interpretations. Literary theories and art studies have indicated that multiple and indeterminate interpretations allow us to create novel understanding and provide us with aesthetic experiences. However, in the cognitive science field, these multiple and indeterminate interpretations have not been represented and modeled. This article proposes a way of modeling the states of multiple and indeterminate interpretations as a time series based on quantum probability theory and discusses the prospect of our approach, focusing on comprehension and aesthetic research. First, we discuss the worth of indeterminate and multiple interpretations for text comprehension and aesthetic experiences. Then, after reviewing the previous comprehension studies, we propose a model of interpretation state, including indeterminacy and multiplicity, as a superposition state based on quantum probability theory and physics. Further, we share the basis of quantum probability theory and the recent studies on quantum cognition for this proposal. Finally, we discuss the prospects of comprehension studies using our approach.
著者
西郷 甲矢人 日髙 昇平 高橋 康介 布山 美慕
出版者
日本認知科学会
雑誌
認知科学 (ISSN:13417924)
巻号頁・発行日
vol.28, no.1, pp.70-83, 2021

<p>The aim of this article is to provide references to cognitive scientists, who are interested in learning category theory and using it in their research. This article consists of the three sections, question-and-answers on category theory, utility of category theory on cognitive science, and tutorial materials. In the question-and-answers on category theory, we answered to questions, with which beginners of category theory may come up. In the utility of category theory on cognitive science, we raised the three items of utility of category theory in building cognitive models. The learning materials share the books, slides, and videos on the web, recommended to start with.</p>
著者
西郷 甲矢人 酒匂 宏樹
出版者
京都大学数理解析研究所
雑誌
数理解析研究所講究録 (ISSN:18802818)
巻号頁・発行日
no.2010, pp.1-23, 2016-12

本稿では、古典的な直交多項式の漸近挙動が逆正弦法則という確率論で重要な確率分布と普遍的なつながりを持っていることを示す。我々の議論の舞台は、量子確率論(非可換確率論もしくは代数的確率論ともよばれる)の基本概念のひとつである「相互作用フォック空間」である。相互作用フォック空間とは、端的にいうならば、一般化された正準交換関係をみたす生成消滅演算子のシステムである。「量子数無限」の極限において、この交換関係が「漸近的に消える」という現象が一切の核心にある。すなわち、「量子古典対応」の数理が、確率論と直交多項式の理論をつないでいると見ることができるのである。さらにこの「漸近的な消え方」を少し一般化してみると、一見逆正弦法則と似ても似つかない(しかし実は深く関連した)、ひとつのパラメータcで特徴づけられた離散的な分布が現れるが、これは量子ウォークという研究分野で知られていたものであった。本稿で概観するこれらの結果は、上に述べたような量子古典対応の数理が、数学の諸分野を横断する原理となりうることを予感させる。(省略した証明については論文[14] を参照のこと。結果もすべてこの論文に基づくものである)