著者
前野 深 新堀 賢志 金子 隆之 藤井 敏嗣 中田 節也 鎌田 桂子 安田 敦 青柳 正規
出版者
東京大学
雑誌
東京大學地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.84, no.4, pp.271-289, 2010-03-29

Burial process of Roman Villa on the northern flank of Mt. Vesuvius, Italy, was reconstructed based on sedimentation processes of laharic deposits newly discovered during 2006-2008 for the extended excavation site in NE to E parts of the Roman Villa. The laharic deposits are distributed on the lower level of the excavation site. The deposits are divided into four subunits, G1-MfL1, G1-DfL1, G1-MfL2, G1-DfL2, based on their sedimentary facies (Mf and Df facies). Mf is characterized by massive and matrix-supported facies, indicating en masse deposition from a laminar flow process, and Df is characterized by stratified and clast supported facies, indicating grain-by-grain aggradation from suspension or traction process. These different types of facies are partially transitional and attributed to variations of sediment/water ratio and internal stress condition inside flows, and may be resulted from an evolutional process, like a flow transformation, of a single debris flow. These laharic deposits directly overlie pyroclastic fallout deposits (G1-Af) in the initial phase of the AD 472 eruption, but are eroded and covered by epiclastic deposits (G1-Mf1, 2, 3, 4 and G1-Df) derived from later- and larger-scale laharic events related to the same eruption. The later laharic deposits include more amounts of basement lava of Mt. Somma, compared with the newly discovered deposits. Characteristics and interpretation of the deposits suggest that lahars just after the 472 eruption came from the north to bury the lower level of buildings and have experienced various types of sedimentation processes. An erosion of the edifice of Mt. Somma may have mainly acted in the later laharic events.
著者
宇井 忠英 隅田 まり 大学合同観測班地質班 荒牧 重雄 大島 治 鎌田 桂子 小林 武彦 小屋口 剛博 佐藤 博明 中川 光弘 中田 節也 藤井 敏嗣 藤縄 明彦 古山 勝彦 三宅 康幸 横瀬 久芳 渡辺 一徳
出版者
特定非営利活動法人日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.38, no.2, pp.45-52, 1993-07-01
被引用文献数
2

Small-scale pyroclastic flows due to the collapse of the lava dome have been frequently generated during the 1991-93 eruption of Unzen Volcano. We have recorded video footages which show the generation of pyroclastic flows during January-March 1992. Two types of phenomena have been observed : deformation of the lava dome due to flowage ; and a sudden discharge of gas and ash through fractures and peeling-off of rock fragments from the surface of cooling lava blocks. Pyroclastic flows were generated only in places on the lava dome where these precursory phenomena were frequently observed.