- 著者
-
安部 祐一
青井 伸也
土屋 和雄
松野 文俊
- 出版者
- 公益社団法人 計測自動制御学会
- 雑誌
- 計測自動制御学会論文集 (ISSN:04534654)
- 巻号頁・発行日
- vol.52, no.11, pp.639-652, 2016 (Released:2016-11-23)
- 参考文献数
- 26
- 被引用文献数
-
1
Multi-legged animals show several types of ipsilateral interlimb coordination. Millipedes show the direct wave gait in which the swing leg movements propagate from posterior to anterior. On the other hand, some centipedes show the retrograde wave gait in which the swing leg movements propagate from anterior to posterior. Interestingly, when some millipede walks in a specific way, it is reported that both direct and retrograde waves of the leg movements can coexist with a source part of the waves (we call it as source wave gaits). However, the mechanism behind the gait generation is still unclear because of the complex nature of the interaction between neural control and body dynamic systems. In this paper, we propose a simple model to gain a better understanding of the mechanism, especially how a local sensory feedback affects multi-legged locomotion. We design a planar multi-legged model and its locomotion control system based on biologically-inspired oscillators with a local sensory feedback, phase resetting. Each oscillator controls each leg, and there are no direct interactions among oscillators. Our simulation results reveal three types of gaits, which have different ipsilateral phase relationships (Direct, retrograde and source wave gaits like animals). These gaits are neither predesigned or predetermined, but emerge through the interaction between the neural control and body dynamic systems through phase resetting. These results suggest that the local sensory feedback is important to form proper interlimb coordination and thereby effectively generates multi-legged gaits. In addition, our mathematical analysis with the simple model successfully extracts the essential feature of these gaits, and suggests that these types of locomotion can exist regardless of the number of legs in our system.