著者
神谷 貴文 中村 佐知子 伊藤 彰 小郷 沙矢香 西島 卓也 申 基澈 村中 康秀
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2016年大会
巻号頁・発行日
2016-03-10

岩石や鉱物に含まれるストロンチウム(Sr)の安定同位体比(87Sr/86Sr)は、これまで主に地質学や岩石学の分野で活用されてきたが、植物は地域基盤である岩石・土壌・水の同位体組成を反映することから、農産物の産地トレーサビリティー指標としても用いられつつある。ワサビ (Wasabia japonica)の栽培地は主に河川最上流部の湧水や渓流水であり、このような立地は、大気降下物や肥料などの人為的な影響が少なく、湧水は各地の地質を直接反映した同位体組成となると考えられる。そこで本研究では、Sr安定同位体比によるワサビの産地判別の可能性を評価することを目的とした。日本の主要なワサビ産地である静岡県、岩手県、長野県、東京都、島根県から計34地点においてワサビ97サンプルおよびその栽培地である湧水・渓流水95サンプルを採取し、微量元素と87Sr/86Srを測定した。その結果、87Sr/86Srは地質の特徴によって異なる値となり、同地点のワサビと湧水の値がほぼ一致することを確認した。第四紀の新しい火山岩地域である静岡県の伊豆・富士山地域では87Sr/86Srがほとんど0.7040以下と最も低い値となり、中生代の花崗岩や堆積岩が分布する長野県や東京都では0.7095以上で高い値となった。このように、87Sr/86Srによってワサビ生産地を判別できることが明らかになった。
著者
秋山隆 久保沙織 豊田秀樹 楠見孝 向後千春
出版者
日本教育心理学会
雑誌
日本教育心理学会第58回総会
巻号頁・発行日
2016-09-22

統計的方法を学ぶことは,これまで,すなわち有意性検定を学ぶことでした。長期に渡りこの大前提はゆるぎなく盤石で,無条件に当たり前で,無意識的ですらありました。しかし,ときは移り,有意性検定やp値の時代的使命は終わりました。アメリカ統計学会ASAは,2016年3月7日に,p値の誤解や誤用に対処する6つの原則に関する声明をだしました (Wasserstein & Lazar, 2016)。この声明は「『ポストp < 0.05 時代』へ向けて研究方法の舵を切らせることを意図している」(R. Wasserstein (ASA News Releases, 2016)) ものだと言明されています。2016年現在,統計学における著名な学術雑誌バイオメトリカ (Biometrika) の過半数の論文が,ベイズ統計学を利用しています。多くの著名な学術雑誌も同様の傾向です。スパムメールをゴミ箱に捨て,日々,私たちの勉強・仕事を助けてくれるのは,ベイズ統計学を利用したメールフィルタです。ベイズ的画像処理によってデジタルリマスターされ,劇的に美しくよみがえった名作映画を私たちは日常的に楽しんでいます。ベイズ理論が様々な分野で爆発的に活用されています。ベイズ的アプローチなしには,もう統計学は語れません。 有意性検定にはどこに問題があったのでしょう。3点あげます。 Ⅰ.p値とは「帰無仮説が正しいと仮定したときに,手元のデータから計算した検定統計量が,今以上に甚だしい値をとる確率」です。この確率が小さい場合に「帰無仮説が正しくかつ確率的に起きにくいことが起きたと考えるのではなく,帰無仮説は間違っていた」と判定します。これが帰無仮説の棄却です。しかし帰無仮説は,偽であることが初めから明白です。それを無理に真と仮定することによって,検定の論理は複雑で抽象的になります。例えば2群の平均値の差の検定における帰無仮説は「2群の母平均が等しい (μ1=μ2)」というものです。しかし異なる2つの群の母平均が,小数点以下を正確に評価して,それでもなお等しいということは科学的にありえません。帰無仮説は偽であることが出発点から明らかであり,これから検討しようとすることが既に明らかであるような論理構成は自然な思考にはなじみません。p値は土台ありえないことを前提として導いた確率なので,確率なのに抽象的で実感が持てません。このことがp値の一番の弊害です。以上の諸事情を引きずり,「有意にならないからといって,差がないとは積極的にいえない」とか「有意になっても,nが大きい場合には意味のある差とは限らない」とか,いろいろな言い訳をしながら有意性検定をこれまで使用してきたのです。しかし,これらの問題点はベイズ的アプローチによって完全に解消されます。ベイズ的アプローチでは研究仮説が正しい確率を直接計算するからです。 Ⅱ.nを増加させるとp値は平均的にいくらでも0に近づきます。これはたいへん奇妙な性質です。nの増加にともなって,いずれは「棄却」という結果になることが,データを取る前に分かっているからです。有意性検定とは「帰無仮説が偽であるという結論の下で,棄却だったらnが大きかった,採択だったらnが小さかったということを判定する方法」と言い換えることすらできます。ナンセンスなのです。これでは何のために分析しているのか分かりません。nを増加させると,p値は平均的にいくらでも0に近づくのですから,BIGデータに対しては,あらゆる意味で有意性検定は無力です。どのデータを分析しても「高度に有意」という無情報な判定を返すのみです。そこで有意性検定ではnの制限をします。これを検定力分析の事前の分析といいます。事前の分析では有意になる確率と学術的な対象の性質から逆算してnを決めます。しかし検定力分析によるサンプルサイズnの制限・設計は纏足 と同じです。統計手法は,本来,データを分析するための手段ですから,たくさんのデータを歓迎すべきです。有意性検定の制度を守るために,それに合わせてnを制限・設計することは本末転倒です。ベイズ推論ではnが大きすぎるなどという事態は決して生じません。 Ⅲ.伝統的な統計学における平均値の差・分散の比・クロス表の適合などの初等的な統計量の標本分布を導くためには,理系学部の2年生程度の解析学の知識が必要になります。すこし複雑な統計量の標本分布を導くためには,統計学のために発達させた分布論という特別な数学が必要になります。それでも,どの統計量の標本分布でも求められるという訳ではなく,導出はとても複雑です。検定統計量の標本分布を導けないと,(教わる側にとっては)統計学が暗記科目になってしまいます。この検定統計量の確率分布は何々で,あちらの検定統計量の確率分布は何々で,のように,まるで歴史の年号のように,いろいろと覚えておかないと使えません。暗記科目なので,自分で工夫するという姿勢が育つはずもなく,紋切り型の形式的な使用に堕す傾向が生じます。でもベイズ統計学は違います。マルコフ連鎖モンテカルロ (MCMC) 法の本質は,数学Ⅱまでの微積分の知識で完全に理解することが可能です。標本分布の理論が必要とする数学と比較すると,それは極めて初等的です。生成量を定義すれば,直ちに事後分布が求まり,統計的推測が可能になります。文科系の心理学者にとっても,統計学は暗記科目ではなくなります。 学問の進歩を木の成長にたとえるならば,平行に成長した幾つかの枝は1本を残して冷酷に枯れ落ちる運命にあります。枯れ果て地面に落ちた定理・理論・知識は肥やしとなり,時代的使命を終えます。選ばれた1本の枝が幹になり,その学問は再構築されます。教授法が研究され,若い世代は労せず易々と古い世代を超えていく。そうでなくてはいけません。 統計学におけるベイズ的アプローチは,当初,高度なモデリング領域において急成長しました。有意性検定では,まったく太刀打ちできない領域だったからです。議論の余地なくベイズ的アプローチは勢力を拡大し,今やその地位はゆるぎない太い枝となりました。 しかし統計学の初歩の領域では少々事情が異なっています。有意性検定による手続き化が完成しており,いろいろと問題はあるけれども,ツールとして使えないわけではありません。なにより,現在,社会で活躍している人材は,教える側も含めて例外なく有意性検定と頻度論で統計教育を受けています。この世代のスイッチングコストは無視できないほどに大きいのです。このままでは有意性検定と頻度論から入門し,ベイズモデリングを中級から学ぶというねじれた統計教育が標準となりかねません。それでは若い世代が無駄な学習努力を強いられることとなります。教科教育学とか教授学習法と呼ばれるメタ学問の使命は,不必要な枝が自然に枯れ落ちるのを待つのではなく,枝ぶりを整え,適切な枝打ちをすることにあります。ではどうしたらいいのでしょう。どのみち枝打ちをするのなら,R.A.フィッシャー卿の手による偉大な「研究者のための統計的方法」にまで戻るべきです。「研究者のための統計的方法」の範囲とは,「データの記述」「正規分布の推測」「独立した2群の差の推測」「対応ある2群の差の推測」「実験計画法」「比率・クロス表の推測」です。これが統計学の入門的教材の初等的定番です。文 献Wasserstein, R. L. & Lazar, N. A. (2016). The ASA's statement on p-values: context, process, and purpose, The American Statistician, DOI:10.1080/00031305.2016.1154108ASA News Releases (2016). American Statistical Association releases statement on statistical significance and p-Values. (http://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf)R.A.フィッシャー(著) 遠藤健児・鍋谷清治(訳) (1970). 研究者のための統計的方法 森北出版 (Fisher, R. A. (1925). Statistical Methods for Research Workers, Oliver and Boyd: Edinburgh.)1 纏足(てんそく)とは,幼児期から足に布を巻き,足が大きくならないようにして小さい靴を履けるようにした,かつて女性に対して行われていた非人道的風習です。靴は,本来,足を保護するための手段ですから,大きくなった足のサイズに靴を合わせるべきです。靴に合わせて足のサイズを制限・整形することは本末転倒であり,愚かな行為です。他の靴を履けばよいのです。
著者
小野 盛司 吉野 守
雑誌
2019年度 人工知能学会全国大会(第33回)
巻号頁・発行日
2019-04-08

将来AI/ロボットが大半の雇用を奪ってしまうと言われている。そのときはベーシックインカムという方法が提案されているが、巨額の財源が必要になる問題と労働意欲の喪失が欠点とされている。その両者を解決するために解放主義社会を提案する。
著者
馬場 章 藤井 敏嗣 千葉 達朗 吉本 充宏 西澤 文勝 渋谷 秀敏
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

将来起こりうる火山災害を軽減するためには,過去の噴火推移の詳細を明らかにすることが重要である.特に西暦1707年の宝永噴火については,富士火山では比較的例の少ない大規模爆発的噴火の例として,ハザードマップ作成でも重要視されている.宝永噴火は基本的にプリニー式噴火であったとみなされているが,火口近傍相の研究は多くない.また,宝永山については,脱ガスしたマグマの貫入による隆起モデルが提唱されており(Miyaji et al.,2011),さらにはマグマ貫入による山体崩壊未遂の可能性と,予知可能な山体崩壊の例として避難計画策定の必要性が指摘されている(小山,2018).本発表では,宝永噴火の火口近傍相の地質調査・全岩化学組成分析・古地磁気測定などから新たに得られた知見をもとに,宝永山の形成過程について考察する.富士火山南東麓に位置する宝永山は,宝永噴火の際に古富士火山の一部が隆起して形成されたと推定されてきた(Tsuya,1955 ; Miyaji et al.,2011).しかし,赤岩を含む宝永山には多種多様な類質岩片は認められるものの,主には緻密な暗灰色スコリア片、火山弾から構成され,斑れい岩岩片や斑れい岩を捕獲した火山弾も認められる.それらの鏡下観察・全岩化学組成分析・古地磁気測定から,赤岩を含む宝永山は,Ho-Ⅲでもステージ2(Miyaji et al.,2011)に対比され ,マグマ水蒸気爆発による火口近傍の降下堆積物ないしサージ堆積物と推定される.また,宝永第2・第3火口縁,御殿庭の侵食谷側壁は,宝永噴火の降下堆積物で構成されており,ステージ1のHo-Ⅰ~Ⅲ(Miyaji et al.,2011)に対比される.侵食谷の基底部に白色・縞状軽石層は現時点において確認できないものの,下位から上位にかけて安山岩質から玄武岩質に漸移的な組成変化(SiO2=62.8~52.2wt%)をしている.そして,宝永第1火口内の火砕丘,宝永山山頂付近,御殿庭の侵食谷から得た古地磁気方位は,古地磁気永年変化曲線(JRFM2K.1)の西暦1707頃の古地磁気方位と一致する.これらの新たな知見に加えて,宝永噴出物のアイソパック(Miyaji et al.,2011),マグマ供給系(藤井,2007 ; 安田ほか,2015)と史料と絵図(小山,2009)も考慮し,宝永噴火に伴う宝永山の形成過程を推定した.宝永山はわずか9日間で形成された宝永噴火の給源近傍相としての火砕丘である.1.玄武岩質マグマがデイサイト質マグマに接触・混合したことで白色・縞状軽石が第1火口付近から噴出し,偏西風により東方向に流された(12月16日10~17時頃,Miyaji et al.,(2011)のUnit A,Bに相当).2.火口拡大に伴って第1火口の山体側も削剥され,多量の類質岩片が本質物と共に東~南方向に放出し,宝永山を形成し始めた(12月17日未明,Miyaji et al.,(2011)のUnit C~Fに相当).3.第1火口縁の地すべりによる火口閉塞ないし火口域の拡大により,噴出中心は第2火口に移行した(12月17~19日、Miyaji et al.,(2011)のUnit G~Iに相当).4.火口閉塞した類質岩片が噴出されることにより,噴火中心は第1火口に遷移し,断続的なマグマ水蒸気爆発により宝永山(赤岩)が形成された(12月19~25日、Miyaji et al.,(2011)のUnit J~Mに相当).5.噴火口が第1火口に限定されることで類質岩片の流入が止み,玄武岩質マグマによるプリニー噴火が6日間継続したのち,噴火が終了した(12月25~30日,Miyaji et al.,(2011)のUnit N~Qに相当).
著者
篠田麻佳 大西彩子
出版者
日本教育心理学会
雑誌
日本教育心理学会第59回総会
巻号頁・発行日
2017-09-27

問題と目的 現代社会では自殺やいじめ,ひきこもりなど様々な問題が発生している。特に子どもや若者の自殺やいじめ,ひきこもりの問題は深刻で大きな社会問題になっている。それらの問題に関連する要因は様々であるが,その一つに自己肯定感の低下が挙げられる。自己肯定感の形成には,人生最初の適応環境である家庭文化の影響が非常に大きく関わっている(榎本,2010)。家庭文化の1つとして親の養育態度があげられる。子ども時代の両親の養育態度と自己肯定感と類似の概念である自尊感情には関連があり(山下,2010),親の受容的な姿勢は子どもの自己肯定感を高めると言われている(龍・小川内,2013)。また,自分の内面を開示し,深い友人関係をもつ人は,そういった関係を避ける人よりも自尊感情は高い(岡田,2011)。このように,自己肯定感と子ども時代の親の養育態度および友人関係の関連については先行研究により示されてきた。しかし,自己肯定感は過去からの積み重ねという要素もあるため,過去や現在を部分的に分けてみるのではなく,子ども時代の出来事が現在にどのように関係しているのかを明らかにする必要がある。篠田・大西(2017)では,親の養育態度および友人関係と自己肯定感との関連が示された。しかし,因果関係については示されていない。そこで本研究では,過去の親の養育態度および現在の友人関係が大学生の自己肯定感へ与える影響について検討することを目的とする。方 法調査対象者 私立大学文系学部に通う学生130名 (男性26名,女性104名,平均年齢20.14歳,SD =.90) を対象に,無記名方式による質問紙調査を行った。調査内容 過去の親の養育態度を測定する尺度としてParental Bonding Instrument(PBI)の日本語版尺度(小川,1991),友人との関わりを測定する尺度として改訂版友人関係機能尺度(丹野,2008),自己肯定感を測定する尺度として大学生版自己肯定感尺度(吉森,2015)を使用した。結 果 Parental Bonding Instrument(PBI)の日本語版尺度,改訂版友人関係機能尺度,大学生版自己肯定感尺度それぞれに主因子法プロマックス回転による因子分析を行った。Parental Bonding Instrument(PBI)の日本語版尺度からは「養護」(α=.90),「過保護・過干渉」(α=.81)の2因子が抽出され,改訂版友人関係機能尺度からは「肯定・受容」(α=.91),「関係継続展望」(α=.88)の2因子が抽出された。また,大学生版自己肯定感尺度からは「安定した自己」(α=.79),「無条件の自己肯定」(α=.80)の2因子が抽出された。過去の親の養育態度が現在の友人関係を媒介して自己肯定感に与える影響を検討するために,共分散構造分析を行った(Figure1)。その結果,適合度指標はχ2=5.14,df=4,p=.273,GFI=.987,AGFI=.932,RMSEA=.047,AIC=39.14であった。「愛情・受容」は「無条件の自己肯定」,「過保護・過干渉」は「安定した自己」に直接的な影響を与えていた。「過保護・過干渉」は「肯定・受容」「関係継続展望」に影響を与えていた。一方,友人関係の「肯定・受容」は「無条件の自己肯定」に影響を与えていた。「過保護・過干渉」は「関係継続展望」を媒介し「安定した自己」に影響を与えていた。考 察 親からの受容的な愛情と,現在の友人に受容されていることは現在の自分を受け入れることに影響していた。先行研究でも,過去の親の愛情・受容が高い群や現在の肯定・受容的な友人関係が高い群は他の群より,現在の自分を受け入れることができると示されており,篠田・大西(2017)の結果に続くものとなった。安定した自己に過保護・過干渉的な関わりが悪影響を与えることが分かったが,愛情・受容的な関わりからの影響は見られなかった。どのような関わりが良い影響を与えるかを検討していく必要がある。また,今後は調査対象者の男女間の偏りを解消することで性別ごとに影響を与える要因についても検討したい。
出版者
人工知能学会
雑誌
2019年度 人工知能学会全国大会(第33回)
巻号頁・発行日
2019-04-08

機械学習技術が様々なシステムに組み込まれて,社会に広がっている.それにつれて,高い精度が得られる一方,説明可能性(ブラックボックス問題),公平性(差別・偏見問題),安全性(品質保証・動作保証問題)の課題も指摘されるようになってきた.本企画セッションは,5件の講演により,これらの課題に対する取り組みの動向を解説し,これからの方向性・対策を議論する.
著者
西川 友章 松澤 孝紀 太田 和晃 内田 直希 西村 卓也 井出 哲
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

Subduction zone megathrust earthquakes result from the interplay between fast dynamic rupture and slow deformation processes, which are directly observed as various slow earthquakes, including tectonic tremors, very low-frequency earthquake (VLFs) and slow slip events (SSEs), and indirectly suggested by a temporal change in the frequency of repeating earthquakes and the occurrence of episodic earthquake swarms. Some megathrust earthquakes have been preceded by slow earthquakes and terminated near the areas where slow earthquakes were frequently observed. While capturing the entire spectrum of slow earthquake activity is crucial for estimating the occurrence time and rupture extent of future megathrust earthquakes in a given subduction zone, such an observation is generally difficult, and slow earthquake activity is poorly understood in most subduction zones, including the Japan Trench, which hosted the 2011 Mw9.0 Tohoku-Oki earthquake. Here we reveal the slow earthquake activity in the Japan Trench in detail using tectonic tremors, which we detected in the seismograms of a new ocean-bottom seismograph network, VLFs, SSEs, repeating earthquakes, and earthquake swarms. We show that the slow earthquake distribution is complementary to the rupture area of the Tohoku-Oki earthquake and correlates with the structural heterogeneity along the Japan Trench. Concentrated slow earthquake activities were observed in the afterslip area of the Tohoku-Oki earthquake, which is located to the south of the fore-arc geological segment boundary. Our results suggest that the megathrust in the Japan Trench is divided into three segments that are characterised by different frictional properties, and that the rupture of the Tohoku-Oki earthquake, which nucleated in the central segment, was terminated by the two adjacent segments.
著者
鎌谷 紀子
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

1 はじめに日本では、北朝鮮付近を震源とする、自然地震ではない可能性がある地震波を気象庁が観測した場合は、気象庁は即座に首相官邸に連絡するとともに記者会見を開き、その事象のパラメーターを発表する。そして、過去に行われた北朝鮮の地下核実験や自然地震の波形と比較した資料を提示して、S波が不明瞭であるなどの地震波形の特徴を根拠として「自然地震ではない可能性がある」との説明を行う。これらの記者会見の資料は、気象庁ホームページで公開される。しかし、核実験の探知は気象庁の本来の業務ではないため、公に発表される解析結果はここまでである。また、CTBTO(包括的核実験禁止条約機構)のデータをもとに核実験を監視する機能を担うNDC1(国内データ・センター1)である気象協会は、核実験が行われた際には地震波形の解析を行うが、監視業務の委託元である日本国際問題研究所ホームページで公表されるのは、「爆発事象の特徴を有する波形であるので、この事象は核爆発を含む人工的な爆発事象である」といったシンプルな報告のみであることが多い。核実験の探知は日本の安全保障上重要な事柄であり、日本の研究者が核実験探知技術を研究することは重要である。今回は、これまでに日本語の文献で公表された、日本における地震波による核実験探知の研究についてレビューする。2 事象を記録していた時代現在入手できる最も古い文献は、久保寺・岡野(1960)であると考えられる。久保寺らは、1958年6月及び7月に米国がビキニ環礁で行った水爆の実験で、微気圧振動が到達するのと同じ時刻に、長周期地震計にも周期9分~1分程度の長周期の波動が記録されていたことを報告しており、それは、気圧変動によって地震計の振り子部分に浮力変化が生じたからであろうとしている。また、気象庁観測部(1972)は、1971年11月7日(日本時間)に米国によってアリューシャン列島アムチトカ島で行われた、TNT火薬約5メガトン級と言われる最大級の地下核実験による地震波形の記録を、ほぼ全国の観測点分掲載している。3 自然地震との識別に関する研究核実験を自然地震から識別するための研究は、主に松代地震観測所における地震波形を用いてなされている。山岸・他(1973)は、地下核実験のP波のスペクトルは短周期の波が卓越していることを述べた。また、大規模な地下核実験であれば、Msとmbを比較すれば識別は可能、と結論づけた。関・他(1980)は、地下核実験でも規模が大きくなるとS波や表面波が観測されることを指摘した。涌井・柿下(1986)は、MbとMSの比を使う識別方法は、大規模な地下核実験にしか適用できないことを指摘した。鎌谷(1998)は、複雑度、スペクトル比、周波数3次モーメントを使って、松代地震観測所の短周期上下動成分で観測された米国ネバダ州と中国シンチャンを震源とする地震波形を解析し、Mb5.3以上のイベントでは地下核実験の複雑度は全て1.00より小さいことを示し、自然地震からの識別には複雑度が最も有効であると述べた。岡本・神定(2007)は、2006年10月9日の北朝鮮による地下核実験について、松代の他、IRISの牡丹江と仁川の地震波形も解析し、PnやPgは自然地震のものと比較して高周波数に卓越していること、P波輻射は爆破震源に見られる等方輻射パターンであること等を示した。また、小山(2007)は、同じ実験について、松代の短周期地震計波形を使用して複雑度とスペクトル比を求め、複雑度よりもスペクトル比の方が識別しやすいとした。菊池(1997)は、1995年~1996年の中国とフランスによる核実験について、IRIS観測点の波形を用いてモーメントテンソルを求め、3つの主値の組み合わせが自然地震とは明らかに異なることや、核実験の震源としては中国は針状、フランスは円盤状のものが推定されることを示した。菊池は、震源の深さが数キロ未満で、かつ、Msとmbの差が大きい地震についてモーメントテンソルを求めることにより効率的に核実験の監視ができるであろうと述べた。これらの他、石川・他(1988)、森脇・石川(2007)、石川(2007)は、松代地震観測所における地下核実験の観測能力等について調査を行っている。また、吉澤(2008)は、IRISと防災科学技術研究所のF-netの地震波形を用いて各相の震幅や見かけ速度を求め、日本海の地震学的構造を論じた。4 今後に向けて日本における地震波による核実験探知の研究は、最近10年間はあまり進展していない。今後は、CTBTOとも連携しながら、核実験の識別技術について世界の研究成果を学ぶ努力が必要である。また、世界の地震波形を解析することにより、地下核実験の識別技術を高める研究を日本でも継続的に進めていくことが重要である。