著者
Sourabh Shrivastava Saji Hameed
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Previous studies have shown that the Indian Ocean Dipole (IOD) has a significant impact on land temperatures over southern Europe. However, whether IOD influences rainfall over this region and how this impact compares to that of El Nino Southern Oscillation (ENSO) have not been established. Here using the E-OBS gridded rainfall datasets for the period 1958 to 2012, we have analyzed the influence of IOD and ENSO on European rainfall. We find that IOD impacts are predominantly felt over southwestern Europe in a region covering Spain and Portugal during the peak phase of the event. Correlations exceeding 0.4 are observed over the central regions of Spain. We find that ENSO impacts on European rainfall are substantially weaker compared to that of IOD, but occur with a pattern similar to the latter. Partial correlation analysis suggests that the marginal ENSO correlations are a statistical areifact arising from the co-occurrence of a fraction of the El Nino events with positive IOD events. Possible dynamical mechanisms by which IOD impacts rainfall over southwestern Europe will be discussed.
著者
金木 俊也 中村 佳博 纐纈 佑衣 向吉 秀樹
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Carbonaceous material (CM) is widely distributed in sedimentary and metamorphic rocks, and its thermal maturity and crystallinity have been used as an indicator of burial and metamorphic temperature history. The relationship between maturity and temperature history of CM has been documented by various analytical techniques, including X-ray diffraction measurements, vitrinite reflectance measurements, transmission electron microscopy, infrared spectroscopy, and Raman spectroscopy. Among these, Raman spectroscopy is increasingly being used because of its rapidness and usefulness, as well as it is normally non-destructive technique (Henry et al., 2019).A typical Raman spectrum of CM exhibits two distinct peaks of D (around 1350 cm–1) and G bands (around 1580 cm–1) (Tuinstra & Koenig, 1970). Various spectral parameters, which is associated with the thermal maturity of CM, are reported; e.g., intensity ratio and full-width at half maximum (FWHM) of D and G bands. Importantly, there are mainly two types in these spectral parameters: (1) parameters calculated from raw data, or (2) parameters calculated by performing spectral fitting. One of the representative parameters of the latter was proposed by Beyssac et al. (2002). Because it is argued that their R2 ratio (area of G band / area of D1+D2+G bands) is closely related to the CM maturity, numerous studies adopted the R2 ratio as a representative parameter of Raman spectra of CM (e.g., Kouketsu et al., 2014). On the other hand, Henry et al. (2018) suggested that spectral fitting should not be performed because it leads to unnecessary errors, and recommended to focus on the parameters that can be calculated from the raw spectrum without spectral fitting.In the light of these backgrounds, the final goal of this study is to investigate whether spectral fitting of Raman spectra of CM is useful to evaluate its thermal maturity. As a first step toward this purpose, we developed a Python script that automatically perform spectral fitting of Raman spectra of CM. Analytical procedures of the script mainly consist of 5 parts: (i) smoothing by Savitzky-Golay filtering method, (ii) background correction with 1st or 3rd order polynomial function, (iii) normalization, (iv) setting of initial spectral parameters, and (v) non-linear spectral fitting with pseudo-Voigt function. We analyze the published data of Raman spectra of CM by Kouketsu et al. (2014), Mukoyoshi et al. (2018), and Nakamura et al. (2019), and compared the calculated parameters with the reported values of vitrinite reflectance. We will show preliminary results of our attempts in this presentation.
著者
南 拓人 中野 慎也 高橋 太 松島 政貴 中島 涼輔 清水 久芳 谷口 陽菜実 藤 浩明
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

The thirteenth generation of International Geomagnetic Reference Field (IGRF-13) was released by International Association of Geomagnetism and Aeronomy (IAGA) in December, 2019. Prior to the release, we submitted a secular variation (SV) candidate model for IGRF-13 using a data assimilation scheme and a magnetohydrodynamic (MHD) dynamo simulation code (Minami et al. submitted to EPS special issue for IGRF-13). Our candidate SV model was evaluated by IAGA Division V Working Group V-MOD and contributed to the final IGRF-13SV model with the optimized weight. This became the first contribution to the IGRF community from research groups in Japan. This was enabled by bilateral corroboration between Japan and France; in our data assimilation scheme, we used the French main field model (Ropp et al. 2020), which was developed from magnetic observatory hourly means, and CHAMP and Swarm-A satellite data. We adopted an iterative assimilation algorithm based on four-dimensional ensemble-based variational method (4DEnVar) (Nakano 2020), which linearizes outputs of our MHD dynamo simulation (Takahashi 2012; 2014) with respect to the deviation from a dynamo state vector at an initial condition. The data vector for the assimilation consists of the poloidal scalar potential of the geomagnetic field at the Earth’s core surface, and flow velocity field slightly below the core surface, which was calculated by presuming magnetic diffusion in the boundary layer and tangentially magnetostrophic flow below it (Matsushima 2020). Dimensionless time of numerical geodynamo was adjusted to the actual time by comparison of secular variation time scales. For estimation of our IGRF-13SV candidate model, we first generated an ensemble of dynamo simulation results from a free dynamo run. We then assimilated the ensemble to the data with a 10-year assimilation window from 2009.50 to 2019.50 through iterations, and finally forecasted future SV by linear combination of the future extension parts of the ensemble members. We generated our final SV candidate model by linear fitting for the best linear combination of the ensemble MHD dynamo simulation members from 2019.50 to 2025.00. We derived errors of our SV candidate model by one standard deviation of SV histograms based on all the ensemble members. In the presentation, we plan to report our IGRF project through the bilateral corroboration with France, and describe our SV candidate model.
著者
高橋 太 中野 慎也 南 拓人 谷口 陽菜実 中島 涼輔 松島 政貴 清水 久芳 藤 浩明
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Secular variation (SV) of the Earth's magnetic field is governed by the advection and diffusion processes of the magnetic field within the fluid outer core. The IGRF (International Geomagnetic Reference Field) offers the average SV for the next five years to come, which has been estimated in various methods. In general, forecasting the evolution of a non-linear system like the geodynamo in the Earth's core is an extremely difficult task, because the magnetic field generation processes are controlled by the complex interaction of the core flows and the generated magnetic field. Data assimilation has been a promising scheme forecasting the geomagnetic SV as demonstrated in literatures (Kuang 2010, Fournier et al. 2015), where time dependency is controlled by a numerical dynamo model. While Ensemble Kalman Filter (EnKF) has been a popular method for data assimilation in geomagnetism, we apply a different data assimilation procedure, that is, four-dimensional, ensemble-based variational scheme, 4DEnVar. Applying the 4DEnVar scheme iteratively, we have derived a candidate SV model for the latest version of the IGRF. In evaluating SV, two forecasting strategies are tested, in which core flows are assumed to be steady or time-dependent. The former approach is favored in Fournier et al. (2015), where the magnetic field evolves kinematically by the flows prescribed to be time-independent in the initialization step. On the other hand, we have adopted linear combination of magnetohydrodynamic (MHD) models to construct a candidate as the best forecast (Minami et al. 2020). It is likely that which strategy is more suitable to forecasting SV depends on assimilation scheme and/or numerical dynamo model. However, we have little knowledge on the issue at present. In this study, we investigate results of MHD and kinematic dynamo runs with a 4DEnVar scheme in order to have a grasp of the properties of the scheme in the 5-year forecast process. Also, MHD and kinematic runs are compared to infer internal dynamics responsible for SV in the geomagnetic field.
著者
松島 政貴 清水 久芳 高橋 太 南 拓人 中野 慎也 中島 涼輔 谷口 陽菜実 藤 浩明
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

The International Geomagnetic Reference Field (IGRF) is a standard mathematical description in terms of spherical harmonic coefficients, known as the Gauss coefficients, for the Earth’s main magnetic field and its secular variation. On December 19, 2019, the working group V-MOD of the International Association of Geomagnetism and Aeronomy (IAGA) released the 13th generation of IGRF, which consists of three constituents; a Definitive IGRF (DGRF) for 2015, an IGRF for 2020, and a secular variation (SV) model from 2020 to 2025. We submitted a candidate model for SV from 2020 to 2025, relying on our strong points, such as geodynamo numerical simulation, data assimilation, and core surface flow modeling.We can estimate core flow near the core-mantle boundary (CMB)from distribution of geomagnetic field and its secular variation. Such a flow model can be obtained for actual physical parameters of the Earth. However, numerical simulations of geodynamo were carried out for physical parameters far from actual ones. Therefore, a core flow model to be used for data assimilation had to be obtained on a condition relevant to the numerical simulations. To obtain the candidate model for SV, we adjusted time-scale of a geodynamo model (Takahashi 2012, 2014) to that of actual SV of geomagnetic field as given by Christensen and Tilgner (2004).In this presentation, we first investigate temporal variations of geomagnetic field due to the magnetic diffusion only. Next, we investigate temporal variations of geomagnetic field due to the motional induction caused by some core flow models as well as the magnetic diffusion. Then we compare secular variations of geomagnetic field forecasted by these methods.
著者
中島 涼輔 吉田 茂生
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Magnetohydrodynamic (MHD) shallow water linear waves are examined on a rotating sphere with a background toroidal magnetic field expressed as B0Φ=B0sinθ, where B0 is constant, θ is the colatitude and Φ is the azimuth. The MHD shallow water equations are often used in studying the dynamics of the solar tachocline (e.g. Gilman & Dikpati, 2002[1]; Márquez-Artavia et al., 2017[2]) and sometimes the outermost Earth's core (Márquez-Artavia et al., 2017[2]; Nakashima, Ph.D. thesis, 2020[3]) and exoplanetary atmosphere (e.g. Heng & Workman, 2014[4]). In this poster, we especially focus on the propagation mechanisms and the force balances of polar trapped waves and unstable modes (Márquez-Artavia et al., 2017[2]; Nakashima, Ph.D. thesis, 2020[3]).Comprehensive searches for eigenmodes yield two polar trapped modes when the main magnetic field is weak (the Lehnert number α=VA/2ΩR2<0.5, where VA is the Alfvén wave velocity, Ω is the rotation rate and R is the sphere radius). One is the slow magnetic Rossby waves, which propagate eastward for zonal wave number m≧2 (Márquez-Artavia et al., 2017[2]). As the Lamb's parameter ε=4Ω2R2/gh→0 (where g is the gravity acceleration and h is the equivalent depth), these branches asymptotically approach the eigenvalues of two-dimensional slow magnetic Rossby waves. Another is newly discovered westward polar trapped modes (Nakashima, Ph.D. thesis, 2020[3]).In the case when α>0.5 (the background field is strong), these novel westward modes merge with the westward-propagating fast magnetic Rossby waves. In addition, only when m=1, polar trapped unstable modes appear due to the interaction between these fast magnetic Rossby waves and westward-propagating slow magnetic Rossby waves. These growth modes are believed to be the polar kink (Tayler) instability (Márquez-Artavia et al., 2017[2]).In order to easily understand the propagation mechanisms and the force balances of polar trapped modes, we investigate a cylindrical model around a pole with an artificial boundary condition. This model provides the approximate dispersion relations and eigenfunctions of polar trapped modes, and indicates that stable polar trapped modes are governed by magnetostrophic balance and that the metric magnetic tension force causes the difference between the slow magnetic Rossby waves and the novel westward modes. For m=1 and α>0.5, the balance between Coriolis and Lorentz forces is disrupted and the part of magnetic tension with which Coriolis force can not compete induces kink instability.[ Reference ][1] Gilman, P. A., Dikpati, M. (2002) Astrophys. J., 576, 1031. doi: 10.1086/341799[2] Márquez-Artavia, X., Jones, C. A., Tobias, S. M. (2017) Geophys. Astrophys. Fluid Dyn., 111, 282. doi: 10.1080/03091929.2017.1301937[3] Nakashima, R. (2020) Ph.D. thesis, Kyushu University. http://dyna.geo.kyushu-u.ac.jp/HomePage/nakashima/pdf/doctoral_thesis.pdf[4] Heng, K., Workman, J. (2014) Astrophys. J. Sup., 213, 27. doi: 10.1088/0067-0049/213/2/27
著者
中島 涼輔 吉田 茂生
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Magnetohydrodynamic (MHD) shallow water linear waves are investigated over a rotating sphere with an imposed equatorially antisymmetric toroidal magnetic field: B0Φ=B0sinθcosθ, where B0 is a constant, θ is the colatitude and Φ is the azimuth. This system can imitatively represent the dynamics of a liquid metal within a stably stratified layer at the top of the Earth's core, which was detected through seismological surveys (e.g. Helffrich & Kaneshima, 2010[1]) and also has been deduced from geophysical and geochemical knowledge (e.g. Buffett & Seagle, 2010[2]; Pozzo et al., 2012[3]; Gubbins & Davies, 2013[4]; Brodholt & Badro, 2017[5]). Because slowly propagating waves in the liquid core can result in geomagnetic secular variations, comparison between exhaustive studies of MHD waves in a rotating stratified fluid and observations of geomagnetic fluctuations should provide constraints on the obscure stratified layer in the outermost core (e.g. Braginsky, 1993[6]; Buffett, 2014[7]).The adopted configuration of the background field complicates solving the eigenvalue problem of linear waves due to the emergence of an Alfvén continuum and critical latitudes unless dissipation effects are taken into account. These result from non-dissipative Alfvén resonance, which occurs only when B0Φ/sinθ depends on θ, that is, regular singular points appear in the differential equation of linear problems. The solutions of the continuum are required to express the transient evolution of an arbitrary initial disturbance (e.g. Case, 1960[8]; Goedbloed & Poedts, 2004[9]). We can confirm numerically and analytically that introducing magnetic diffusion eliminates these Alfvén continuous modes and their singular structures around critical latitudes (Nakashima, Ph.D. thesis, 2020[10]).For the Earth's core-like parameter (B0≃0.5—5mT and magnetic diffusivity η≃1m2/s), westward polar trapped modes are obtained as eigenmodes, which have a period of around from several to 1000 years. We may be able to observe these modes as geomagnetic secular variations in high latitude regions, if the strength of stratification in the stratified layer is close to the estimate of Buffett (2014)[7]. The analyses of recent geomagnetic models and paleomagnetic data in terms of such waves could confirm the robustness of previous estimates of the properties of the layer.[ Reference ][1] Helffrich, G., Kaneshima, S. (2010) Nature, 468, 807. doi: 10.1038/nature09636[2] Buffett, B. A., Seagle, C. T. (2010) J. Geophys. Res., 115, B04407. doi: 10.1029/2009JB006751[3] Pozzo, M., Davies, C., Gubbins, D., Alfè, D. (2012) Nature, 485, 355. doi: 10.1038/nature11031[4] Gubbins, D., Davies, C. J. (2013) Phys. Earth Planet. Inter., 215, 21. doi: 10.1016/j.pepi.2012.11.001[5] Brodholt, J., Badro, J. (2017) Geophys. Res. Lett., 44, 8303. doi: 10.1002/2017GL074261[6] Braginsky, S. I. (1993) J. Geomag. Geoelectr., 45, 1517. doi: 10.5636/jgg.45.1517[7] Buffett, B. (2014) Nature, 507, 484. doi: 10.1038/nature13122[8] Case, K. M. (1960) Phys. Fluids, 3, 143. doi: 10.1063/1.1706010[9] Goedbloed, J. P., Poedts, S. (2004) Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, Cambridge Univ. Press, Cambridge.[10] Nakashima, R. (2020) Ph.D. thesis, Kyushu University. http://dyna.geo.kyushu-u.ac.jp/HomePage/nakashima/pdf/doctoral_thesis.pdf
著者
清杉 孝司 巽 好幸 鈴木 桂子 金子 克哉 中岡 礼奈 山本 由弦 羽生 毅 清水 賢 島 伸和 松野 哲男 菊池 瞭平 山口 寛登
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Catastrophic caldera-forming eruptions that discharge more than 40 km3 of Si–rich magma as pyroclastics are rare but extremely hazardous events (eruption magnitude >7). Estimating the eruption volume of pyroclastics and the magma discharge rate in caldera–cycle is essential in evaluating the risk and cause of catastrophic caldera–forming eruptions. For this reason, we took sediment cores with Hydraulic Piston Coring System (HPCS) and Short HPCS (S-HPCS) of D/V Chikyu at Kikai volcano in January 11–14, 2020. Kikai volcano (Kikai caldera) is located about 45 km off southern Kyushu Island, Japan. Except two islands (Satsuma Iwo-Jima Island and Take-Shima Island) on the northern part of the caldera rim, most of the caldera structure is under the sea. At Kikai volcano, three ignimbrites are known; the 140 ka Koabi ignimbrite, the 95 ka Nagase ignimbrite, and the latest 7.3 ka Koya ignimbrite.Sediments were recovered from 5 sites about 4.3 km off the northeastern side of Take-Shima Island. Each drilling site was separated by 10–20 m from any other site. The sediment was not consolidated. Bioturbation was not observed. The sediment sequence, from the top of the cores, consists of gravel unit, ill-sorted lapilli unit, reddish tephra unit, sandy silt unit, and white tephra unit. The sedimentary facies of these sediments is as follows.Gravel unit: The presence of this unit in the upper part of the sequence is suggested by gravels which fell in the drilling holes and recovered with the sediments of the lower sequence. The gravels are consist of white tuffaceous rock, obsidian, gray volcanic rock, reddish altered volcanic rock, gray pumice and altered pumice. They are angular to sub-angular in shape and varying in size up to 5 cm in diameter.Ill-sorted lapilli unit: This deposit consists of ill-sorted lapilli size light yellow colored pumices and lithics of dark volcanic rock, gray volcanic rock, and obsidian. The maximum grain size of the pumice is more than 5 cm, whereas the maximum grain size of the lithic is about 4 cm. The abundance of the pumice component varies with depth. The thickness of the unit is more than 7 m at the drilling sites. The color of the pumice suggests that this unit may be a secondary deposit of underlying Koya ignimbrite deposit.Reddish tephra unit: It consists of layers (maximum thickness at least 40 cm) of slightly reddish to orange ill-sorted pumice lapilli and thin layers (~1 cm thick) of relatively well-sorted ash. The thickness of the deposit is more than 5 m at the drilling sites. The characteristic color of pumice suggests that this unit is the deposit of Koya ignimbrite. Formation of relatively thin layers of lapilli and ash may be due to the deposition under the sea.Sandy silt unit: It consists of very fine fragments of black volcanic rock. The sediment contains small fragments (~5 mm) of sea shells and other organic materials. Foraminifars were also contained in this deposit. The thickness of this unit is at least 20.36 m.White tephra unit: This deposit mainly consists of ill-sorted white pumice lapilli and relatively well-sorted ash. The maximum pumice size is at least 11 cm. The thickness of the deposit is at least 30 m. The deposit is characterized by the presence of crystals of quartz, which is known as a remarkable feature of the Nagase ignimbrite deposit to distinguish it from the other tephra at Kikai volcano. Especially, the middle part of the recovered Nagase ignimbrite deposit (63–64 m below the seafloor) shows unique sedimentary face: it consists of only crystals of quartz (<2 mm in size), orthopyroxene and clinopyroxene (<1 mm in size), and magnetite (<2 mm in size). Formation of the sedimentary face may be due to the deposition of hot ignimbrite under the sea.Description of these sedimentary units is essential to distinguish the ignimbrite deposits and understand their flow behavior in the sea. We will show the detail of these sedimentary facies in the presentation.
著者
廣澤愛子 大西将史 岸俊行
出版者
日本教育心理学会
雑誌
日本教育心理学会第57回総会
巻号頁・発行日
2015-08-07

目 的 解離とは,苦痛をもたらすものを自己から切り離す心的作用であり(Putnum,1997),解離性同一性障害に代表されるような病的解離もあれば,単に苦痛な事柄をなかったことにしようとする非病理的な解離もある。Putnum(1997)によると,病的解離は正常な人が稀にしか体験しないものであり,病的解離と非病理的解離は異なる認知構造を有すると言う。そして両者の大きな違いは,非病理的解離が苦痛な状況を切り離したことを覚えている点である。近年,非病理的解離の増加が指摘されているが(岩宮, 2009),その研究は,病的解離と比べて極めて少ない。そこで本研究では,病的解離とは異なる認知構造を有する非病理的解離の尺度を作成する。なお,非病理的解離は自分にとって苦痛なものを意識的に切り離す行為であるため,ストレスへの対処行動と考えることができる。そこでこの尺度を解離的対処行動尺度と呼ぶ。方 法 調査協力者 大学生154名(男80名,女74名,平均年齢20.51,標準偏差1.35)を対象に質問紙調査を実施した。 調査内容 (1) 解離的対処行動尺度 いじめ体験に関する記述回答(廣澤,2008),及び回避的なストレス対処行動に関する既存の尺度を参照し,苦痛な体験を「切り捨てる」14項目,苦痛な体験と「距離を置く」12項目,辛い気持ちを「割り切る」10項目,計36項目の尺度を作成した。評定は全く当てはまらない~非常に当てはまるまでの6段階である。 (2) 解離性体験尺度 病的解離との弁別的妥当性を確認するために,Bernstein&Putnam(1986)による解離性体験尺度の日本語版28項目(田辺・小川,1992)を用いた。「0%:そういうことはない」から「100%:いつもそうだ」の11件法で回答を求めた。 (3) 対人ストレスコーピング尺度 加藤(2001)による本尺度は,ポジティブ関係コーピング16項目,ネガティブ関係コーピング10項目,解決先送りコーピング8項目から成る。評定は,当てはまらない~よくあてはまるまでの4段階である。結果と考察 解離的対処行動尺度の因子分析 尺度の候補項目について3因子を指定し,因子分析(主因子法,Promax回転)を行った。そして因子負荷量が.35未満の項目,当該因子以外への負荷量が.20以上の項目,計21項目を削除し,再度因子分析(主因子法,Promax回転)を行ったところ,想定した3因子構造(切り捨て6項目,距離を置く5項目,割り切り4項目)が得られた。3因子の累積寄与率は47.7%であった。因子負荷及び因子間相関をTable1に示す。 解離的対処行動尺度の信頼性の検討 3因子ごとのα係数は,切り捨て(α=.77),距離を置く(α=.75),割り切り(α=.68)であった。「割り切り」のα係数がやや低いが,項目数が4項目であることを考えると,許容範囲と考えられる。 解離的対処行動尺度の妥当性の検討 解離性体験尺度との相関では,「切り捨て」「距離を置く」「割り切り」のいずれも相関が見られず,病的解離との弁別的妥当性が確認された。次に対人ストレスコーピング尺度との相関では,「切り捨て」及び「距離を置く」はネガティブコーピングと(r= .31,r= .26),「割り切り」は先送りコーピングと(r= .36),弱い正の相関が見られた。対人ストレスコーピングとの関連が見られたことから,本尺度の構成概念妥当性が示された。また,抑鬱や友人関係における否定的影響との関連が指摘されているネガティブコーピングと相関が見られた「切り捨て」及び「距離を置く」は,望ましくない結果をもたらす対処行動と言える。一方,「割り切り」と相関が見られた先送りコーピングは,ストレス緩和や友人関係における満足感の向上との関連が指摘されており(今田, 2000など),肯定的結果をもたらす対処攻略と言える。このように,解離的対処行動は肯定的・否定的両面の結果をもたらす心性であることが示唆された。
著者
中野 茉莉恵 有馬 正貴 長田 洋資 桜井 研三 升森 智香子 水野 将徳 都築 慶光 小野 裕國 後藤 建次郎 近田 正英 麻生 健太郎
出版者
特定非営利活動法人 日本小児循環器学会
雑誌
第51回日本小児循環器学会総会・学術集会
巻号頁・発行日
2015-04-21

【緒言】単心室症例のFontan術後にhepatic factorの偏在が側副血行路を生むことが報告され、長期予後への影響が示唆されている。肝静脈血を左右の肺動脈に灌流させる必要があるが、Fontan手術施行例では肝静脈と肺動脈を繋ぐルートの作成に苦慮する場合も多い。今回、Total cavopulmonary shunt (TCPS)術後に肝静脈-肺動脈ルート作成に難渋した心房内臓錯位症例に対して肝静脈-半奇静脈吻合を行い、良好なFontan循環を確立した症例を経験したので報告する。【症例】2歳10ヶ月女児。在胎39週5日、2896gで出生。胎児期より心房内臓錯位を指摘されており、出生後、左側相同、両大血管右室起始、肺動脈狭窄、卵円孔開存、下大静脈欠損半奇静脈結合と診断した。心房は左心房が右前方、右心房が左後方の関係にあり、肝静脈は椎体の左側を走行し右心房に開口していた。生後7ヶ月時に肺動脈絞扼術、心房中隔作成術を施行した。1歳1ヶ月時にTCPSを施行、左上大静脈と左肺動脈を吻合した。2歳4か月時、Total cavopulmonary connection(TCPC)の方針となり、心外導管のルーティングについて検討した。肝静脈が椎体の左側にあるため、導管を右側に通して作成すると椎骨や心室によりルートが圧迫される可能性が考えられた。一方で、左側に作成すると、ルートが長く屈曲することやTCPS吻合部近辺の肺動脈形成が必要となると予想され、どちらの術式を選択しても導管狭窄やhepatic factorの分布に偏りが生じる可能性があったため、肝静脈-半奇静脈吻合を選択した。術後1ヶ月時に施行した心臓カテーテル検査では、肝静脈圧 11 mmHg, 半奇静脈圧 9 mmHg, 肺動脈圧 8 mmHgで、肺動静脈瘻の発生はなく良好なFontan循環を維持していた。【結語】下大静脈欠損を伴う左側相同に対して肝静脈-半奇静脈吻合を行い、その後も良好なFontan循環を確認した。肝静脈-半奇静脈吻合は、下大静脈欠損の症例に対する右心バイパスの有効な吻合方法である。