著者
麻生 大 星野 健 大竹 真紀子 唐牛 譲
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Introduction:JAXA aims to conduct sustainable lunar exploration activities in the next 50 years, such as operation of lunar base with international partners and private sectors. To realize this goal, we will conduct technology demonstration step-by-step. JAXA envisions our space exploration as the extension from the Low Earth Orbit (LEO) to the Moon and Mars, with our international partners, in order to advance our contribution to intellectual assets.In October last year, the Japanese government announced its decision to officially join the international space exploration, and to proceed on coordination in the several areas including sharing of data acquired from our lunar exploration missions and technologies for lunar landing site selection.Japanese lunar exploration missions:Regarding lunar surface robotic missions, JAXA is developing Smart Lander for Investigating the Moon (SLIM), which aims to demonstrate the high-precision landing technology. The targeted launch year is 2021. Following this SLIM mission, a lunar polar exploration mission is aimed at investigating the water ice resources in the lunar polar region. This is a collaborative mission with Indian Space Research Organisation (ISRO).Objectives of the lunar polar exploration:In addition to the scientific interest about the origin and concentration mechanism of the water ice, there is strong interest in using water ice (if present) as an in-situ resources. Specifically, using water ice as a propellant will significantly affect future exploration scenarios and activities because the propellant generated from the water can be used for ascent from the lunar surface.Because of the existing limited remote-sensed data, we need to find out, by direct measurement on the lunar surface, the presence of water ice, it’s quantity, quality (pure water or contain other phases such as CO2 or CH4), and usability (how deep do we need to drill or how much energy is required to get water) in order to assess if we can use it as resources. Obtaining data to understand the principle of the water distribution and concentration is necessary to estimate the quantity and quality of water across the Moon.Status on the mission:ISRO/JAXA are jointly conducting the conceptual design (i.e. Phase-A study) under the Implementation Arrangement (IA) for the lunar polar exploration mission, in which JAXA provides a launch vehicle and a rover while ISRO provides a lander. System Requirement Review (SRR) is scheduled for this year. JAXA selected function and specification of several instruments, which will be loaded on the rover or the lander.Spacecraft configuration:The spacecraft system is based on direct communication with the Earth. The target mass of the spacecraft (incl. payload and propellant) is about 6ton and the payload mass is about 350kg. After the spacecraft reaches the Moon, it is inserted into a circular orbit having a 100km altitude via a few orbital changes. During powered-descent phase, the position of the lander is estimated by landmark navigation using shadows created by the terrain. After landing, the rover is deployed on the lunar surface using ramps. The rover then prospects water ice with its observation instruments.Landing site selection:We are down-selecting the candidates of landing site of the lunar polar region using the following parameters as constraints:- Continuous daytime: equal or more than 60days.- Continuous nighttime: equal or less than 14days.- Comm. capability: equal or more than 25%.- Land inclination: equal or less than 10deg.As a trial of the landing site selection, sunshine is simulated using digital elevation models to obtain the sunlight days per year and the number of continuous sunshine periods at each site. The maps of simulated communication visibility from the Earth and the slope are created.Conclusion:In this presentation, we will introduce current status on Japanese lunar exploration missions, focusing on a lunar polar exploration.
著者
星野 健 大竹 真紀子 唐牛 譲 白石 浩章
出版者
日本地球惑星科学連合
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

Introduction:Recently, it has been suggested that water ice might be present in the lunar polar region based on spectral measurements of artificial-impact-induced plumes in the permanently shadowed region, and remote sensing observation of the lunar surface using a neutron spectrometer [1], [2] and visible to infrared spectrometer [3]. In addition to the scientific interest about the origin and concentration mechanism of the water ice, there is strong interest in using water ice (if present) as an in-situ resources. Specifically, using water ice as a propellant will significantly affect future exploration scenarios and activities because the propellant generated from the water can be used for ascent from the lunar surface and can reduce the mass of the launched spacecraft of lunar landing missions.However, currently it is unclear if water ice is really present in the polar region because of the currently limited available data. Therefore, we need to learn that by directly measuring on the lunar surface. If there is water ice, we also need to know it’s quantity (how much), quality (is it pure water or does it contain other phases such as CO2 and CH4), and usability (how deep do we need to drill or how much energy is required to derive the water) for assessing if we can use it as resources. Therefore, JAXA is studying a lunar polar exploration mission that aims to gain the above information and to establish the technology for planetary surface exploration [4]. JAXA is also studying possibility of implementing it within the framework of international collaboration with Indian Space Research Organisation (ISRO).Spacecraft configuration:The spacecraft system comprises a lander system and a rover system. The system does not have a communication relay satellite but is based on direct communication with the Earth. The minimum target for the landing payload mass is several-hundred kilograms. The launch orbit is the lunar transfer orbit (LTO). After the spacecraft reaches the Moon it is inserted into a circular orbit having a 100km altitude via a few orbital changes. During powered-descent phase, the position of the lander is estimated by landmark navigation using shadows created by the terrain. After landing, the rover is deployed on the lunar surface using ramps. The rover then prospects water ice with its observation instruments..Spacecraft configuration:The spacecraft system comprises a lander system and a rover system. The system does not have a communication relay satellite but is based on direct communication with the Earth. The minimum target for the landing payload mass is several-hundred kilograms. The launch orbit is the lunar transfer orbit (LTO). After the spacecraft reaches the Moon it is inserted into a circular orbit having a 100km altitude via a few orbital changes. During powered-descent phase, the position of the lander is estimated by landmark navigation using shadows created by the terrain. After landing, the rover is deployed on the lunar surface using ramps. The rover then prospects water ice with its observation instruments..Landing site selection:Considering the mission objectives and condition of the lunar polar region, we listed the following parameters as constraints.- Presence of water- Surface topography- Communication capability- Duration of sunshineAs a first trial of the landing site selection, sunshine is simulated using digital elevation models to obtain the sunlight days per year and the number of continuous sunshine periods at each site. Also, slope and the simulated communication visibility map from the Earth are created. These conditions can be superimposed to select the landing site candidate.Current status:Recently, we finished joint mission definition review (JMDR) with ISRO, in which JAXA provide a launch rocket and a rover while ISRO provide a lander system. Related to the instruments which will be carried on the rover or the lander, JAXA selected several candidate instrument study teams for accelerating development of these instruments. In this presentation, we are going to introduce current status of the mission planning.References:[1] Feldman W. C. et al. (1998) Science, 281, 1496-1500.[2] Sanin A. B. et al. (2017) Icarus, 283, 20-30.[3] Pieters C. M. et al. (2009) Science, 326, 568-572.[4] Hoshino T. et al. (2017) 68th IAC, IAC-17-3.2B.4.
著者
仲内 悠祐 佐藤 広幸 長岡 央 佐伯 和人 大竹 真紀子 白石 浩章 本田 親寿 石原 吉明
雑誌
日本地球惑星科学連合2021年大会
巻号頁・発行日
2021-03-24

Smart Lander for Investigating Moon (SLIM) project will demonstrate a “pin-point” landing within a radius of 100 m on the lunar surface. It will be launched in FY2022. The SLIM aims “SHIOLI” crater (13.3º S, 25.2º E) to derive the detailed mineralogy of the olivine-rich exposures to investigate the composition of the lunar mantle or deep crustal material, and understand their origin. The Multi Band Camera (MBC) is the scientific instrument on board SLIM lander to obtain Mg# (= molar Mg / (Mg + Fe)) of lunar mantle materials. The MBC is composed of a Vis-InGaAs imaging sensor, a filter-wheel with 10 band-pass filters, a movable mirror for panning and tilting, and an autofocus system. The MBC observes the boulders and regolith distributed around the lander. Since various distances to the objects are expected from a few meters to infinity, the MBC is equipped with an auto-focus (AF) system. The MBC uses the jpeg compression technique. An image with maximum sharpness taken in a best focus position will have the largest image file size after JPEG compression. Using this characteristic, the AF algorithm is designed to automatically find the focus lens position that maximizes the image file size after jpeg compression. Our AF system has been tested using the Engineering Model of MBC (MBC-EM). The imaging target is a picture of lunar surface obtained by previous spacecrafts and basaltic rocks from Hawaii. Our results suggest that the amount of initial movement is important parameter. In the presentation, we will show the results of AF system, and MBC operation plan.
著者
大竹 真紀子 廣井 孝弘 中村 良介 武田 弘 荒井 朋子 横田 康弘 春山 純一 諸田 智克 松永 恒雄 宮本 英昭 本田 親寿 小川 佳子 平田 成
出版者
一般社団法人日本鉱物科学会
雑誌
日本鉱物科学会年会講演要旨集
巻号頁・発行日
vol.2009, pp.23, 2009

マルチバンドイメージャは月周回衛星かぐや観測機器の1つであり、高度100kmの軌道から可視・近赤外波長域、合計9バンドの月面分光画像を取得する。本研究では、MIの高い月面空間分解能とS/Nを生かして月上部地殻の組成を推定した。解析対象として、月全球のクレータ約70個を直径や年代等の条件により選定・解析し、詳細な鉱物含有量比推定を行った。結果、最終選別した約30箇所のうち高地地域の直径30km以上の全クレータ(20箇所)で、極端に斜長石に富んだ(斜長石含有量が98vol.%程度以上の)岩層の分布が観測された。また、これら岩層は深さ4から30kmに分布する。月高地地域の上部地殻は、この極端に斜長石に富んだ層で構成されると考えられ、このような組成の地殻を形成するために非常に効率的なマグマからの斜長石結晶の分離プロセスが必要となることを示唆している。
著者
大竹 真紀子 荒井 朋子 武田 弘 唐牛 譲 佐伯 和人 諸田 智克 小林 進悟 大槻 真嗣 國井 康晴
出版者
日本惑星科学会
雑誌
日本惑星科学会誌遊星人 (ISSN:0918273X)
巻号頁・発行日
vol.21, no.3, pp.217-223, 2012
参考文献数
16

従来,月の地殻組成は月採取帰還試料や月隕石の分析値を基に推定されてきたが,最近になって,月周回衛星"かぐや"データを用いた研究などにより,既存の月採取帰還試料とは異なる組成の,より早い分化段階で形成した始原的な地殻物質が,月裏側に存在する事が指摘されている.これら未採取の月裏側地殻物質を入手し,詳細な化学組成等の情報を得る事は,月高地地殻の組成,月マグマオーシャンの固化過程や熱履歴を知ることに加え,月・地球系の形成過程を考える上でも重要な課題である.本提案では,来る10年の惑星探査計画として,月裏側の高地地域から未採取地殻物質の採取帰還を行い,詳細な組成分析,同位体分析,組織分析,既存のリモートセンシングデータと比較するための分光測定,風化度測定など,さまざまな分析を行うことにより,これら科学目標達成を目指すミッションを提案する.
著者
大竹 真紀
出版者
[東北農業試験研究協議会]
雑誌
東北農業研究 (ISSN:03886727)
巻号頁・発行日
no.67, pp.133-134, 2014-12

福島県会津地域はシュッコンカスミソウの夏秋期の主産地であり、市場性の高い品種を導入するとともに収量を上げる摘心方法の改善を進めている。主要品種「アルタイル」は、育成した谷によると、吸肥力が強く茎葉が剛直になりやすいため施肥量を控える必要があるが、窒素吸収の実態は明らかになっていない。そこで、高冷地の夏秋出荷作型において摘心方法にあった窒素施用量と採花本数について検討した。
著者
三箇 智二 春山 純一 大竹 真紀子 大嶽 久志
出版者
日本情報地質学会
雑誌
情報地質 (ISSN:0388502X)
巻号頁・発行日
vol.9, no.3, pp.135-145, 1998-09-25
被引用文献数
1

資源開発を行うにあたり対象地域の地理情報システム(GIS)が作成され, これらにリモートセンシング画像が加えられることが多い.対象地域の広域的な地質構造の把握には, 複数の画像からなる地域を解析することが必要である.複数の画像を接合した広域モザイク画像では幾何学(地理)的位置が一致することや統一された輝度補正画像であることが要求される.しかしながら発展途上国や惑星では画像上の位置を地形図で正確に求めることができない場合が多く、必然的に画像間で相対的な位置関係を精度良く求める必要がある.筆者らは広域のモザイク画像作成手法と輝度補正手法について開発を行ってきた.この技術の応用例として, クレメンタイン探査機によって撮影された月面画像の解析例を紹介する.この解析では月の画像特性の解析・画像処理を進める上での障害事項の抽出とその検討を行い, 新たな放射量補正手法と幾何歪みの蓄積しない広域画像接合手法を開発した.