著者
伊藤 海斗 加嶋 健司
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第36回 (2022) (ISSN:27587347)
巻号頁・発行日
pp.4K1GS101, 2022 (Released:2022-07-11)

確率分布を所望の分布に効率よく輸送する問題(最適輸送問題)は,機械学習を含め様々な応用が期待されている.本研究では,動的システム上で離散分布を所望の離散分布に輸送する問題を考える.これはエージェントの集団を所望の分布形状に最適制御する問題とも見なせる.通常の最適輸送と比較して,動的システム上の最適輸送特有の問題は,各輸送コストを知るために最適制御問題を解く必要があり,そして制御に要する実時間性を保って最適輸送問題を解かなければならないことである.そこで本研究では,モデル予測制御(MPC)とSinkhornアルゴリズムを組み合わせた動的な輸送アルゴリズムを提案する.MPCは各時刻で有限時間の最適制御を解くことで実時間最適制御を実現する手法である.またSinkhornアルゴリズムは,エントロピー正則化最適輸送を効率的に解く反復計算手法である.これらを活用し,具体的には最適制御計算とSinkhornアルゴリズムの反復を並行して行うことで,実時間性をもつ効率のよい輸送法を提案する.特に,対象システムが線形の場合に,提案手法で制御されるダイナミクスの有界性や漸近安定性といった重要な性質を示す.
著者
黒木 裕鷹 真鍋 友則 指田 晋吾 中川 慧
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会第二種研究会資料 (ISSN:24365556)
巻号頁・発行日
vol.2022, no.FIN-029, pp.47-53, 2022-10-08 (Released:2022-10-01)

決算説明会とは,企業がステークホルダーに対し業績や計画・戦略を決算内容とともに説明する場である.決算説明会の参加者は経営者による説明を聞くことができるほか,質疑応答を通して業績と見通しに関する疑問を解消することができる.一方で,参加者はアナリストや機関投資家に限定されていることが多く,決算説明会に参加できない投資家との情報格差が指摘されてきた.しかしながら,本邦における決算説明会の情報価値についての分析例はほとんど存在しない.そこで本報告では,質疑応答を含む決算説明会のテキストデータに感情極性を付与し,説明会がもつ情報価値を定量的に分析する.具体的には,金融専門極性辞書と Fama-French のファクターモデルを利用して株価リターンに対する説明力を分析する.
著者
今城 健太郎 南 健太郎 伊藤 克哉 中川 慧
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第34回 (2020)
巻号頁・発行日
pp.4Rin120, 2020 (Released:2020-06-19)

株式投資におけるポートフォリオ構築は金融分野で重要な課題である.本論文では,株式市場における共通因子をヘッジしたあとに残る残差リターン (residual return) という概念に着目し,その分布予測に基づいてポートフォリオを構築する新しい手法を提案する.提案手法の特徴は,単純なスペクトル分解を用いることで残差リターンの情報を抽出すること,および金融時系列に特有のスケール不変性を考慮した新しい深層学習のアーキテクチャを利用した分布予測を行うことである.本論文では,日本の株式市場のデータを用いた実証実験によって提案手法の有効性を示す.
著者
渡辺 知恵美 中村 聡史
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.30, no.1, pp.340-352, 2015-01-06 (Released:2015-01-06)
参考文献数
19
被引用文献数
3

This paper proposes a ranking methodology of cooking recipe by using fitness value between a recipe and onomatopoeia. This system is implemented as a function of a cooking recipe search site “Onomatoperori”. By using onomatopoeia, users can find what they want to cook from their ambiguous idea. We defined formulas for calculating fitness value between recipe and onomatopoeia by using mutual information between onomatopoeia and a word in title or description of recipes. In addition, we defined the similarity measure between onomatopeia words by mapping their words by using 15 sentimental dimensions for expressing the tastes and textures of the dishes. And we improve the ranking methodology by using the similarity among onomatopoeia words. By using these ranking methodologies we can search the cooking recipes which are related to the onomatopoeia although they do not include the onomatopeia word in the recipes.
著者
岩佐 和典 小松 孝徳
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.30, no.1, pp.265-273, 2015-01-06 (Released:2015-01-06)
参考文献数
19
被引用文献数
1

The purpose of this study was to investigate how the naming of an object influences visually induced tactile impression and emotional valence, using tactile sense-related onomatopoeic words for evaluation of tactile impression. The present study focused on how visually induced tactile impression and valence might differ when different names of the same visual texture were presented. In addition, to investigate the relationship between visually induced tactile impression and valence, correlations among change rates of tactile impression and valence induced by the alteration of names were examined. 60 undergraduate students (mean age = 19.55, male = 3, female = 57) participated in the experiment. The results revealed that different tactile impressions and emotional responses were evoked by the same visual texture when different names were presented. Moreover, significant correlations were found between change rates of tactile impression and valence. These results show that visually induced tactile impression and emotion are influenced by top-down semantic processes.
著者
草田 裕紀 水田 孝信 早川 聡 和泉 潔
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.30, no.5, pp.675-682, 2015-09-01 (Released:2015-09-01)
参考文献数
22
被引用文献数
5

We analyzed the impact of position-based market maker, which tries to maintain its neutral position, to the competition among stock exchanges by an artificial market simulation approach. In the previous study, we built an artificial market model and investigated for the impact of non-position-based market maker's spread to the markets' shares of trading volumes. However it had the serious problem that the non-position-based market maker is too simple to manage its own position properly and so we could not judge weather the result of previous study is correct or not. Thus in this study, we made a position-based market maker and explored the competition, in terms of taking markets' shares of trading volumes, between two artificial financial markets that have exactly the same specifications except existing a market maker, the non-position-based market maker or the position-based market maker. As a result, we found that the position-based market maker can acquire the share of trading volumes from the competitor even though its spread is bigger than bid-offer-spread of the competitor. Moreover, we revealed that position-based market maker can get a profit even in the situation that its spread or tick sizes of the stock exchanges are small. In addition to that, position-based market maker made a profit in almost all experiments which we conducted in this research by changing its spread and tick sizes of markets. At last, we confirmed that position-based market maker can manage its position properly compared to non-position-based market maker. In conclusion, the position-based market maker can not only supply liquidity to stock exchanges and contribute to acquire the share from the competitor as well as the non-position-based market maker does, but also manage its own position properly and make a profit.
著者
岡谷 英夫
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.30, no.1, pp.257-264, 2015-01-06 (Released:2015-01-06)
参考文献数
17
被引用文献数
1 2

Sensory words such as onomatopoeia are difficult for students of Japanese because their cultures are different. How onomatopoeia are dealt with in elementary school compulsory education has been reviewed with the aim of considering how it can be applied to students of Japanese as a second language. Five Japanese textbooks that are currently in use at elementary schools for native speakers of Japanese were examined to see which onomatopoeic words appear and to what extent. A total of 6,443 onomatopoeic words were listed in these textbooks. Of the vast range of 6,443 words from the originally wide variety of words as counted from grade 1 to grade 6 from all the Japanese language textbooks, 92 were high-frequency onomatopoeic words which are proposed as the “basic onomatopoeia for beginners” as well as what kind of onomatopoeia and to what extent. These 92 high-frequency onomatopoeic words appeared 3,416 times, or 53.02% of the total 6,443 onomatopoeic words. If these 92 onomatopoeic words were studied, then over 50% of onomatopoeic words would be comprehensible to learners of Japanese. In addition, which verbs appear in conjunction with these onomatopoeic words together with their frequency are indicated.
著者
水上 雅博 Lasguido Nio 木付 英士 野村 敏男 Graham Neubig 吉野 幸一郎 Sakriani Sakti 戸田 智基 中村 哲
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
pp.DSF-517, (Released:2015-12-15)
参考文献数
23
被引用文献数
4

In dialogue systems, dialogue modeling is one of the most important factors contributing to user satisfaction. Especially in example-based dialogue modeling (EBDM), effective methods for dialog example databases and selecting response utterances from examples improve dialogue quality. Conventional EBDM-based systems use example database consisting of pair of user query and system response. However, the best responses for the same user query are different depending on the user's preference. We propose an EBDM framework that predicts user satisfaction to select the best system response for the user from multiple response candidates. We define two methods for user satisfaction prediction; prediction using user query and system response pairs, and prediction using user feedback for the system response. Prediction using query/response pairs allows for evaluation of examples themselves, while prediction using user feedback can be used to adapt the system responses to user feedback. We also propose two response selection methods for example-based dialog, one static and one user adaptive, based on these satisfaction prediction methods. Experimental results showed that the proposed methods can estimate user satisfaction and adapt to user preference, improving user satisfaction score.
著者
宮原 克典
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第37回 (2023) (ISSN:27587347)
巻号頁・発行日
pp.1K5OS11b04, 2023 (Released:2023-07-10)

2022年6月、Googleのエンジニアが、大規模言語モデルLaMDAには意識があり、一人の主体として扱われるべきだと主張した。Google社は主張を退け、多くの論客がそれに賛同した。大規模言語モデル(LLM)への主体性の帰属を否定する理由は、いくつかある。(1)LLMの内在的特性に関わる理由:LLMは意識も意図ももちえない。(2)LLMへの主体性の帰属の帰結に関わる理由:LLMを主体として扱うことは、より重要な問題から社会の注意や関心を逸らせる。(3)個人のウェルビーイングに関わる理由:LLMを主体として扱うことは、本人の社会的孤立につながりうる。本発表では、これらの理由を検討し、LLMを主体として扱うべきではないと断言するのが意外に難しいことを示す。また、ロボットの道徳的地位やフィクトフィリア(架空の存在への性愛)をめぐる議論を引きながら、LLMへの主体性帰属の正当性を判断するためのポイントを整理する。
著者
尾崎 大晟 中川 智皓 内藤 昭一 井之上 直也 山口 健史 新谷 篤彦
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第37回 (2023) (ISSN:27587347)
巻号頁・発行日
pp.4Xin111, 2023 (Released:2023-07-10)

教育現場をはじめ,批判的思考力の育成が求められている.議論における適切な反論例を被教育者に示すことは重要である.しかし,教育者が多様な反論例を考えたり,評価したりすることは負担が大きい.そこで本研究では,批判的思考力育成に有効かという観点から,昨今注目を浴びている大規模言語モデルであるGPT-3と,オンラインディベートフォーラムの議論を用いて,自動生成される反論文の品質評価,及びGPT-3を活用する上での生成文の高品質化可能性の検証考察をすることを目的とする.収集した議論例からGPT-3へのプロンプトを作成し,トピック毎に生成文をまとめ,収集した反論と生成した反論の同項目でのスコアリングによる人手での評価と,BERTScoreによる文章一致率評価をする.結果として「反論文単体での論理の正しさ」と「立論に対しての反論文になっているか」の項目において高い数値を得た.また生成した反論は収集した反論とBERTScore上高い類似度であることを示した.各評価項目毎の入力文と生成文の比較,並びに入力方式毎の生成の相違点,今後の課題について報告する.
著者
濵本 鴻志 葛谷 潤 荒井 ひろみ
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第35回 (2021)
巻号頁・発行日
pp.2C4OS9b02, 2021 (Released:2021-06-14)

人工知能(AI)の発展が目覚ましい一方で、その背景にある機械学習、特に深層学習のブラックボックス性は、信頼と責任の観点から社会実装の障害となっている。こうしたブラックボックス化の問題を解決するために、説明可能AIのコミュニティでは、透明性や説明責任を実装するための技術的な取り組みが急速に進められているだけでなく、近年では、そもそも説明とは何かといった哲学的問題に取り組む研究も始まっている。既存の研究の一つとして、Mittelstadt et al. (2019)は、Miller (2019)による説明概念の分析に基づいて、対話型の対比的説明を提供する説明可能AIの開発の必要性を訴えている。本論文では、まず、肺炎リスク予測システムの事例を用いて説明可能AIのニーズを確認し、次にMittelstadt et al.(2019)の議論を概観した上で、そこで提案されている対話型の対比的説明の有用性について議論する。
著者
保住 純 松尾 豊
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第32回 (2018) (ISSN:27587347)
巻号頁・発行日
pp.1K2OS2b03, 2018 (Released:2018-07-30)

本研究では深層敵対的生成ネットワークを用いたマンガイラスト(1コマ分に相当する画像)の自動生成を試みる.近年,深層学習を用いて自動的に画像を生成する研究が数多く行われてきたが,その際に用いられるモデルの一つに敵対的生成モデルがあり,高品質な画像を生成するための様々な手法が提案されてきた.ただし,これら研究の多くが検証に用いるデータセットは情報量が多い写真画像を対象としたものとなっているため,主にモノクロの線画によって構成され,かつ様々なシーンが描画されるマンガイラストに対してはこれらが適切とは言えない可能性がある.一方で,イラストを敵対的生成ネットワーク(GAN)によって自動生成する研究や,マンガを対象として人工知能を用いる研究も従来より数多く行われているが,マンガイラストを直接生成しようとする試みは,あまり行われていなかった.そこで,本研究では深層敵対的生成ネットワークを用いたマンガイラストの自動生成実験を,使用する層の数や損失関数を変更することで複数回行い,その結果を考察する.本研究にて得られる示唆は,人工知能によるマンガの自動生成を研究していく上で有益なものになると考えられる.
著者
杉山 雅和 吉村 綾馬 友松 祐太 小町 守
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第35回 (2021)
巻号頁・発行日
pp.2Yin504, 2021 (Released:2021-06-14)

近年、音声認識や音声合成の性能が向上しておりそれらを用いた音声自動応答サービスが広く提供され始めている。音声自動応答サービスでは音声認識の精度がサービスの質に直結する重要な要素であるが、性能が向上しているとはいえ音声認識の精度は完璧ではない。そこで我々は音声認識誤りを含む音声認識結果を、文法誤り訂正と同じように訂正することを考える。文法誤り訂正は、巨大なコーパスで事前学習した言語モデルを用いた深層学習系の手法の台頭により性能が飛躍的に向上しているが、音声認識誤りを含む大規模な日本語コーパスは存在しない。そこで小規模な音声認識コーパスから誤り傾向を分析して誤り付与ルールを策定し、そのルールを巨大な日本語コーパスに適用することで、自動的に擬似音声認識誤りコーパスを作成した。本研究では複数の条件で作成した擬似誤りコーパスを事前学習に用いてTransformerによる誤り訂正の実験を行い、コーパス作成の設定が精度に与える影響の評価を行う。