著者
田中 真人
出版者
同志社大学
雑誌
キリスト教社会問題研究 (ISSN:04503139)
巻号頁・発行日
vol.46, pp.74-94, 1998

論説
著者
田中 真人 伊積 孝 吉村 浩喜
出版者
The Society of Chemical Engineers, Japan
雑誌
化学工学論文集 (ISSN:0386216X)
巻号頁・発行日
vol.11, no.6, pp.668-673, 1985

自由液表面からの気体の巻き込みと巻き込まれた気泡の定常分散が開始される攪拌速度が翼形状, 邪魔板枚数翼位置, 液深, 槽径, 表面張力のような因子を変化させることによって, また, ドラフトチューブを設置することによって測定された.検討されたすべての翼 (6枚羽根デスクタービン, 4枚羽根角度付ファンタービン, 3枚羽根プロペラ) に対して, 邪魔板の設置とその枚数の増加は気体巻き込み攪拌速度を増加した.4枚邪魔板条件に対して, 次のような実験式を得た.<BR><I>N</I><I><SUB>re</SUB></I><SUP>2</SUP><I>d<SUB>i</SUB></I>/<I>g</I>=<I>A</I> (σ/σ<SUB>0</SUB>) <SUP>3.6</SUP> (<I>d<SUB>i</SUB></I>/<I>D<SUB>T</SUB></I>) <SUP>-3.6</SUP> (<I>h<SUB>L</SUB></I>/<I>D<SUB>T</SUB></I>) <I><SUP>c</SUP></I> (<I>h<SUB>L</SUB></I>-<I>h<SUB>i</SUB></I>/<I>h<SUB>L</SUB></I>) <I><SUP>d</SUP></I><BR>ここで, <I>A, c, d</I>は翼形状に依存している.<BR>デスクタービンを除く翼に対して, ドラフトチューブの設置とその長さを長くすると気体巻き込み攪拌速度を増加した.さらに, 邪魔板とドラフトチューブを同時に設置するとすべての翼に対して気体巻き込み攪拌速度を増加することがわかった.
著者
藤川 正毅 石川 清貴 真壁 朝敏 田中 真人 笹川 崇 表 竜二
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
pp.15-00454, (Released:2016-01-15)
参考文献数
13
被引用文献数
6 5

This paper proposes a novel implementation scheme of geometrically nonlinear finite element programs, which automatically compute exact internal force vectors and element stiffness matrices by numerically differentiating a strain energy function at each element. This method can significantly simplify the complex implementation procedure which is often observed in conventional finite element implementations, since it never requires B matrices, stress tensors, and elastic tensors by hand. The proposed method is based on a highly accurate numerical derivatives which use hyper-dual numbers and never suffer from any round-off and truncation errors. Several numerical examples are performed to demonstrate the effectiveness and robustness of the proposed method.
著者
藤川 正毅 田中 真人 井元 佑介 三目 直登 浦本 武雄 山中 脩也
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.86, no.881, pp.19-00256, 2020 (Released:2020-01-25)
参考文献数
20
被引用文献数
1

A numerical calculation scheme for stress and its consistent tangent moduli with hyper-dual numbers(HDN) for Ogden-type hyperelastic material model was proposed. The main advantage of this scheme is that once the framework is coded, any Ogden-type hyperelastic material model can be implemented by only re-coding the strain energy density function. In this scheme, the new differentiation method for eigenvalue and eigenvector of the symmetric matrices with HDN were proposed. The proposed method can calculate the eigenvalue and eigenvector in non-real part analytically by using the eigenvalue and eigenvector in real part, in case that all eigenvalues in real part are not multiple root. We implemented the Neo-Hookean model and the Ogden model with the proposed scheme, to confirm the effectiveness and robustness of this method, and applied it to some examples. As the results, it was confirmed that the numerical results of the proposed method showed good agreement with analytical ones.
著者
田中 真人 藤川 正毅 儀間 麻衣
出版者
日本学術会議 「機械工学委員会・土木工学・建築学委員会合同IUTAM分科会」
雑誌
理論応用力学講演会 講演論文集 第61回理論応用力学講演会
巻号頁・発行日
pp.88, 2012 (Released:2012-03-28)

本発表では,丸め誤差のない新たな数値微分近似手法として複素数階微分法を提示する.本手法を大変形材料構成則の応力および整合接線剛性の導出に応用した事例を紹介する.ここでは,陰的解法の代表的な汎用FEMソフトウェアであるAbaqus/Standardの材料構成則のユーザサブルーチンUMATを例にとり,その実装方法について示す.また,いくつかの数値計算例を通して,本手法の有効性を示す.
著者
藤川 正毅 田中 真人 井元 佑介 三目 直登 浦本 武雄 山中 脩也
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集
巻号頁・発行日
vol.86, no.881, pp.19-00256-19-00256, 2020
被引用文献数
1

<p>A numerical calculation scheme for stress and its consistent tangent moduli with hyper-dual numbers(HDN) for Ogden-type hyperelastic material model was proposed. The main advantage of this scheme is that once the framework is coded, any Ogden-type hyperelastic material model can be implemented by only re-coding the strain energy density function. In this scheme, the new differentiation method for eigenvalue and eigenvector of the symmetric matrices with HDN were proposed. The proposed method can calculate the eigenvalue and eigenvector in non-real part analytically by using the eigenvalue and eigenvector in real part, in case that all eigenvalues in real part are not multiple root. We implemented the Neo-Hookean model and the Ogden model with the proposed scheme, to confirm the effectiveness and robustness of this method, and applied it to some examples. As the results, it was confirmed that the numerical results of the proposed method showed good agreement with analytical ones.</p>
著者
藤川 正毅 田中 真人 井元 佑介 三目 直登 浦本 武雄 山中 脩也
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集
巻号頁・発行日
2019
被引用文献数
1

<p>A numerical calculation scheme for stress and its consistent tangent moduli with hyper-dual numbers(HDN) for Ogden-type hyperelastic material model was proposed. The main advantage of this scheme is that once the framework is coded, any Ogden-type hyperelastic material model can be implemented by only re-coding the strain energy density function. In this scheme, the new differentiation method for eigenvalue and eigenvector of the symmetric matrices with HDN were proposed. The proposed method can calculate the eigenvalue and eigenvector in non-real part analytically by using the eigenvalue and eigenvector in real part, in case that all eigenvalues in real part are not multiple root. We implemented the Neo-Hookean model and the Ogden model with the proposed scheme, to confirm the effectiveness and robustness of this method, and applied it to some examples. As the results, it was confirmed that the numerical results of the proposed method showed good agreement with analytical ones.</p>
著者
土田 英治 田中 真人
出版者
日本貝類学会
雑誌
貝類学雑誌 (ISSN:00423580)
巻号頁・発行日
vol.58, no.4, pp.159-163, 1999
参考文献数
3

A new terebrid species, Hastula hamamotoi is described. The new species was collected from the lower sublittoral zone of the offshore area of the west of Kushimoto, Kii Peninsula, Pacific coast of central Japan.
著者
藤川 正毅 石川 清貴 真壁 朝敏 田中 真人 笹川 崇 表 竜二
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
2016
被引用文献数
2

This paper presents a novel Formulated Alpha FEM with deviatoric / volumetric split, which is combination of standard FEM and Node-based Smoothed FEM (NS-FEM), to compute highly accurate deformation in mechanical problems using tetrahedral elements. The essential idea of the method is the use of a deviatoric alpha formulated on basis of the results of cantilever problem, and the volumetric alpha introduced NS-FEM. The features of this proposed method are: 1) immune from volumetric locking, 2) less sensitive to element distortion, and 3) to be carried out with the same preprocessing as standard FEM from user's viewpoint. Several numerical examples show that the present method achieves higher accuracy compared to the standard FEM and Edge-based/NS-FEM which is known to be one of the best S-FEM formulations.
著者
藤川 正毅 石川 清貴 真壁 朝敏 田中 真人 笹川 崇 表 竜二
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.82, no.834, pp.15-00454-15-00454, 2016
被引用文献数
5

This paper proposes a novel implementation scheme of geometrically nonlinear finite element programs, which automatically compute exact internal force vectors and element stiffness matrices by numerically differentiating a strain energy function at each element. This method can significantly simplify the complex implementation procedure which is often observed in conventional finite element implementations, since it never requires B matrices, stress tensors, and elastic tensors by hand. The proposed method is based on a highly accurate numerical derivatives which use hyper-dual numbers and never suffer from any round-off and truncation errors. Several numerical examples are performed to demonstrate the effectiveness and robustness of the proposed method.
著者
藤川 正毅 石川 清貴 真壁 朝敏 田中 真人 笹川 崇 表 竜二
出版者
The Japan Society of Mechanical Engineers
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
2016
被引用文献数
5

This paper proposes a novel implementation scheme of geometrically nonlinear finite element programs, which automatically compute exact internal force vectors and element stiffness matrices by numerically differentiating a strain energy function at each element. This method can significantly simplify the complex implementation procedure which is often observed in conventional finite element implementations, since it never requires B matrices, stress tensors, and elastic tensors by hand. The proposed method is based on a highly accurate numerical derivatives which use hyper-dual numbers and never suffer from any round-off and truncation errors. Several numerical examples are performed to demonstrate the effectiveness and robustness of the proposed method.