著者
宇津 徳治
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.57, no.3, pp.p401-463, 1982
被引用文献数
22

A catalog of earthquakes of magnitude 6 or more felt in Japan and smaller earthquakes which caused damage in Japan from 1885 through 1980 is presented. The catalog also contains unfelt earthquakes of M≧6 which occurred in the vicinity of Japan (region A indicated in the map), but the listing of unfelt earthquakes may be incomplete for the years before 1924. The catalog is incomplete for deep earthquakes before 1900. The main sources of materials are Utsu's catalog of 1979 (revised in 1982) for 1885-1925, the new JMA catalog (1982) for 1926-1960, and the JMA Seismological Bulletin for 1961-1980. Gutenberg-Richter's catalog (1954), ISS, or ISC Bulletins are used for focal coordinates of earthquakes occurring outside of the network of JMA stations. For some earthquakes the author has determined the focal coordinates or magnitudes. Statistical analyses of the catalog and studies of seismicity patterns in relation to the occurrence of great earthquakes will be published elsewhere.
著者
宇津 徳治
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.61, no.4, pp.p551-561, 1987-03
被引用文献数
2

日本のマントル最上部地震(深さ40~80km程度,ただし異常震域が現れる東日本の太平洋岸沖合の地震や北海道太平洋沿岸の地震を除く)に対する震度I(気象庁震度階級),震央距離Δ(km),マグニチュードM(気象庁方式)の標準的関係を表す実験式を132個の地震(M : 5~7)の震度データを用いて求めた.I-Δの平均回帰直線I=I100-b(Δ-100)の定数を,次の式でMと結んだものを提出する.I100=1.5M-6.1 b=0.0523-0.0063Mこれらの式によりあるM,Δに対する震度を求めたとき,得られた値の小数点以下を四捨五入したものが整数値で表される通常の震度になる.
著者
羽鳥 徳太郎
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.43, no.4, pp.773-782, 1966-03

1965年2月4日05時01分21.8秒(GMT),アリューシャン列島中部に大地震が起こり,これに伴なつた津波は全太平洋に伝播し,北海道では地震後3時間30分して第1波を感じ,全日本太平洋岸で波高20~40cm(平常時の潮位上)の津波が観測された.U.S.C.G.S.の観測報告によれば震央は51.3°N,178.6゜E深さ40km,M=73/4(PAS,BEK)である.日本に伝播した津波について,気象庁,水路部,国土地理院から提供された検潮記録および,地震研究所で観測した宮城江ノ島,八丈島,伊豆大島,千葉県金谷の津波計記録を用い津波の概要を紹介し,二,三の考察を行なつた.
著者
Matuzawa Takeo
出版者
東京帝国大学地震研究所
雑誌
東京帝國大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, Tokyo Imperial University (ISSN:00408972)
巻号頁・発行日
vol.21, no.2, pp.231-235, 1944-03-15

Tikaku no yo na Zyuryoku no Ba ni aru Baisitu dewa Entyoku-hoko to Suiheihoko to dewa Kotogara ga tigau kara Ihosei wo simesu de aro koto ga kangaerareru. Kono yona Baai no Ihosei wa Dansei-keisu ni taisite wa Ropposyokei no Kessyo no Baai ni naru to kangaerareru. Ippan no Kessyotai no Naka dewa mitori no dokuritu ni tutawaru koto no dekiru Nami ga atte sono Sindo-hoko wa tagai ni suityoku de aru koto wa wakatte iru ga, ima kari ni Ropposyotai de aru Beryll no Rei wo totte miru to sono Naka no Nami no Arisama wa Fig.1 ni simesu yo ni naru. Kyokusen I, II, III wa soresore mitari no Nami no Hamen wo arawasite ori Yazirusi no Hoko wa sindo no hoko wo arawasite iru. I de arawasareru Nami wa Somitu-ha ni tikai Seisitu no mono de ari, II oyobi III de arawasareru Nami wa Yozire-Nami no Seisitu ni tikai mono de aru.
著者
浜田 盛久
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.91, no.3, pp.41-54, 2016

Izu-Oshima is an active volcano located on the volcanic front of the Izu arc. It erupts island arc low-K tholeiite magma. During the past 150 years it has erupted repeatedly at intervals of 30-40 years. Thirty years have already passed since its last eruption (1986-1987) ; therefore, the next eruption is expected in the near future. The hypothesis that the next eruption of Izu-Oshima volcano is triggered by an aftereffect of the M9Tohoku-Oki earthquake, which took place on March 11th, 2011, is considered. In both the 9th century and the period between the 17th century and the 20th century, volcanism of Izu-Oshima volcano seems to have been activated in association with earthquakes occurring near the volcano. While some eruptions occurred after earthquakes, others occurred before earthquakes. It is possible that regional tectonic stress can trigger both major earthquakes and intense volcanic activity, although this hypothesis should be tested at Izu-Oshima volcano and/or elsewhere. Petrological studies of Izu-Oshima volcano are also reviewed to understand its magma plumbing system, providing useful information to prepare for its next eruption. It is proposed that polybaric crystallization differentiation of H2O-saturated magmas proceeds in both the magma chamber at 4 km depth (~3 wt.% H2O in melt) and the magma chamber at 9km depth (~5 wt.% H2O in melt). The H2O-rich nature of the basaltic magmas beneath the volcano suggests that a future eruption of Izu-Oshima volcano could be highly explosive if dissolved volatiles in melt are not sufficiently degassed from magma ascending through the conduit
著者
葉室 和親 荒牧 重雄 藤岡 換太郎 石井 輝秋 田中 武男 宇都 浩三
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.58, no.2, pp.p527-557, 1983
被引用文献数
3

1979年12月の淡青丸KT-79-18航海の際,東伊豆沖海底火山群,大島南方の大室出シ堆,新島東方の新島ウラノ瀬などの海底火山の岩石をドレッジにより採集した.東伊豆沖海底火山群は,岩石の鉱物・化学的特徴により北半部,中部,南部に細分することができる.北半部の岩石はすべて高アルカリソレアイト系列の玄武岩・安山岩溶岩であり,伊豆半島中部東部に分布する東伊豆単成火山群がそのまま海底に延長して孤立した海底火山として分布しているものと考えて差支えない.中部では,低アルカリ(低Na2O)ソレアイト系列の玄武岩が5点のドレッジから発見された.そのうち伊豆大島に近い2点は,伊豆大島火山の玄武岩類に似た鉱物・化学組成をもち,新鮮である.西側の3点の岩石はいずれも風化変質作用を受けており,小角礫の集合として産する.これらは伊豆大島火山や東伊豆単成火山群よりも古い海底火山に属するものと判断される.南部のドレッジ2点からは東伊豆単成火山群南西部のグループの岩石に似た玄武岩が得られた。大室出シは,ガラス質多孔質の新鮮な流紋岩溶岩流から成る平坦な頂部をもつ海底火山と考えられる.山体の中央部に深さ100m,長さ1.5km,幅0.5kmの凹陥地(大室海穴)があるが,その壁からは流紋岩溶岩が採集された.新島ウラノ瀬の南東麓からは,流紋岩溶岩と変質した玄武岩礫,石英閃緑岩礫などが採集された.後者はこの地域を構成する基盤岩類と考えられる.
著者
茂木 清夫
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.47, no.3, pp.429-451, 1969-06

The tectonic relief on the focal regions of great shallow earthquakes in the circum-Pacific belt and its surrounding regions is discussed in relation to the generation mechanism of great earthquakes. In Part I, relationship between the tectonic relief and the occurrence of the great ・earthquake (namely the great fracture) is discussed according to aftershock locations. The result shows that a great fracture suddenly occurs in a unit area or its complex which is bounded by structural discontinuities, such as faults, ridges and trenches. In a sequential occurrence of great earthquakes, a subsequent great fracture propagates from the margin of the adjacent fractured area. In Part II, the "tectonic features of the focal regions of the great shallow earthquakes are discussed in their broader aspects. According to the result, most great earthquakes occur in the tectonically limited regions, characterized mainly by topographical depression: About 64 percent of great earthquakes continuously occurred in ocean-facing slopes of deep sea trenches, about 26 percent occurred in local depressions, such as troughs and ends of trenches, and some singular places in tectonic structures, and only about 8 percent occurred in other tectonic areas. These results seem to give some important information on the earthquake generation mechanism.|大地震の起こり方の特徴についてこれまでいくつかの調査を行なってきたが,本報告では,地体構造,とくに長期の地殻変動のあらわれとみられる変動地形(断層や海溝)との関係について述べる.第I部では,大地震のときの大規模破壊の過程を反映しているとみられる余震の起こり方と構造との関係を述べ,第II部では,このような大地震の起こる場所の地体構造上の特徴を論ずる.今回の調査は,太平洋地域及びその周辺に限られている.次にその結果を要約する.第I部 大地震の余震と地体構造 アリューシャン,チリ,日本の大地震の余震の起こり方は,震源域の断層や海溝の分布と密接な関係を示し,次のような過程が推定される.即ち,大地震の際の大規模破壊は,既存の構造上の不連続線で境された単一若しくは複合ブロックで起こり,このブロックは海溝の陸側斜面にあって海溝にまたがらない.一つのブロックの破壊につづいて隣接ブロックの破壊が起こる場合が多く,その際破壊は既破壊ブロック寄りから進行する.第II部 浅い大地震の震源域の地体構造上の特徴 この様な大地震(又は大規模破壊)の起こり方を地体構造との関連の上からみると,約64%の大きい地震が大海溝の陸側斜面に連続的に分布し(Type A),約26%が小規模海溝の末端や局所的高まりなどに起こり(Type B),その他の地域に起こったもの(Type C)は僅かに10%にすぎない.即ち,大地震のほとんどは,Type A及びBに属するもので,その発生地域は極めて限定され,凹地形という共通の特微が指摘される.南米の北部チリ海溝及び伊豆・マリアナ海溝では例外的に浅い大地震が少ないが,ここではそれを補うように深い地震活動が活発である.以上,大地震の震源域は,大局的にも,局部的にも,地体構造と密接な関連を示し,これが大地震の発生機構を研究する上の重要な手掛りとなると思われる.
著者
前田 実利 鶴我 佳代子 及川 純
出版者
東京大学地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.70, no.2, pp.91-102, 1995
被引用文献数
1

We conducted broadband seismic observations of artifical explosions on December 1, 1994, in the Kirishima volcanic area, southern Kyushu, Japan. We clarified the dominant characteristics of wave-propagating paths in this area and the potential of broadband seismic observations for artifical sources. We analyzed seismograms at three sites located around one of the shot points (near Karakuni Dake) at distances shorter than 1.3 km.
著者
川北 優子 酒井 慎一
出版者
東京大学
雑誌
東京大學地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.84, no.2, pp.127-139, 2010-01-28

The Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area has been ongoing (2007−2012). Under this project, the Metropolitan Seismic Observation network (MeSO-net), which consists of about 400 observation sites, has been constructed. The correlations of waveform from local and teleseismic events are high because observation sites are deployed at about 2 or 3-km intervals. In addition, the later phase is easily identified although artificial noise is very intense. However, we are attempting to improve quality by characterizing the various types of noise. In the metropolitan area, various human activities are observed that generate noise such as trains, automobiles, aircrafts, factories, and electrical power. These adversely affect our observations. We recognize various types of noise from continuous records. A spectral graph and a spectrogram in each station are useful for characterizing signals and noise. We also discovered a form of system noise obtained from the relationship between sensor and electrical circuit. We named it Aurora Noise. The strength of Aurora Noise was reduced by improving the electrical circuit. Our study will lead to improving the quality of observed data, and contribute to a new assessment of seismic hazard in the Tokyo Metropolitan Area in Japan.
著者
笠原 敬司 酒井 慎一 森田 裕一 平田 直 鶴岡 弘 中川 茂樹 楠城 一嘉 小原 一成
出版者
東京大学
雑誌
東京大學地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.84, no.2, pp.71-88, 2010-01-28

To better assess the seismic hazards produced by a magnitude 7 or greater (M 7+) earthquake in the Tokyo metropolitan area, we have launched the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007−2011). This requires establishing a highly dense seismic-array observation network in and around Tokyo to monitor ongoing micro-earthquakes with relatively high precision even if noise levels are generally high. We have started developing the Metropolitan Seismic Observation network (MeSO-net). Deployment of MeSO-net seismic stations is currently underway. The number of observatories at project termination will be 400 with a 2−5km interval in space. In this paper, we summarize how we solved technically difficult and practical problems involved in MeSO-net construction. We start with a review of related work to better understand the technical difficulties involved in deploying stations in metropolitan areas such as Tokyo. Next, we explain our approach to verifying a meaningful design of an observatory and its deployment at local sites. We further describe our decision-making process in practice for implementing station deployment. We hope that establishing the MeSO-net will support a new assessment of the seismic hazards produced by M 7+ earthquakes in the Tokyo metropolitan area.
著者
井上 卓彦 村上 文敏 岡村 行信 池原 研
出版者
地震研究所
雑誌
東京大学地震研究所彙報 (ISSN:00408972)
巻号頁・発行日
vol.82, no.4, pp.301-312, 2007

The 2007 Noto Hanto Earthquake (MJMA 6.9) occurred on 25 March, 2007 at 37°13.2′N, 136°41.1′E, under the northwestern coast of Noto Peninsula, Ishikawa Prefecture. To clarify distribution and activity of active fault, a high-resolution multi-channel seismic survey was carried out in the source area using Boomer and a 12 channel streamer cable. Seismic profiles depict geologic structure up to 150 meters deep under sea floor. Sedimentary sequences ranging in age from Miocene to Holocene time are deformed by ENE-WSW to N-S trending folds and faults. The deformed sediments were truncated by erosional surfaces. The age of erosion is not clear in the offshore area, but the most remarkable erosion surface was formed at the Last Glacial Maximum (LGM) age. The surface is covered by Holocene sediments up to 40m thick. A NW downthrown fault continues in the ENE-WSW direction for more than 21 kilometers. The fault cuts Neogene sediments, but the deformation in the Holocene sediments is recognized as flexure. The fault is located near the northern margin of the aftershock area of the 2007 earthquake, supporting that the fault is connected to the source fault of the 2007 earthquake. The deformations in the Holocene sediments increase downward, indicating that the fault slipped repeatedly during the period of Holocene time. Comparison between the 3.5kHz SBP profiles obtained in 1988 and twelve channel seismic profiles after the earthquake suggests that the deformation during the 2007 earthquake occurred on the seafloor along the fault.
著者
瀬戸 憲彦 橋本 信一 飯高 隆
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.68, no.3-4, pp.195-208, 1994-03-30

南西諸島は,琉球海溝にほぼ並行に位置する弧状列島である。近年,南西諸島の西端に位置する西表島において群発地震活動がみられ,1992年9月17日からは西表島北西沖において活発な群発地震活動が発生した.そのため,1992年10月29日から同年11月7日にかけて,無線テレメータによる地震活動の監視と無線によるテレコントロールシステム(テレコンシステム)を用いた高密度観測をおこなった.その結果,観測期間中に1060個の地震が観測され,活発な活動状況を示した.震源分布においては,今回の活動はいくつかの群(クラスター)からなり,全体の傾向として北西-南東方向に分布していることがわかった.震源の深さは,おもに8kmから12kmであり,上部地殻の深部での活動であることがわかった.また,いくつかのテレメータの観測点で後続波が観測され,走時解析から,地殻内部に速度不連続面が存在することが示された.その地殻内速度不連続面は島の北西部から沖合いにかけて位置し,深さ13km程度に求まった.その地域の震源分布の鉛直断面図を見ると,深いところから浅いところに向かって鉛直方向にならぶ明瞭なトレンドが見られた.また,テレコンシステムを用いた解析では,初動の押し引きの重ね合わせによって,震央分布の北西-南東方向に走行を持つ正断層のメカニズム解か推定された.
著者
矢部 長克 田山 利三郎
出版者
東京帝国大学地震研究所
雑誌
東京帝國大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, Tokyo Imperial University (ISSN:00408972)
巻号頁・発行日
vol.12, no.3, pp.539-565, 1934-09-30

重力野の状況が、殊に我が國の様な不安定な所では、永年變化をなすのではないであらうかと云ふ事を縮める爲に始めた實測である。觀測に用ひた器械は重力偏差計の原理によつたもので、全部熔融シリカで製作した。精度は、普通の可搬重力偏差計の約20倍程のものである。先づ此の器械が信用すべき記録を興へると云ふ事を確めた後、連續觀測を始めた。始めたのは今年一月であるから、未だ何等の結論は得られてゐない。只其の間に降雨による地下水の影響が重力野にも及ぶ事を縮めた。又夜半にも短週期の重力野の變動が現れる事がある。地下水の影響と認められるものを除いても、かなり長い時間に亘る重力野の變動が見られろ。之は何に原因するのかは今の所解つて居ない。
著者
西山 昭仁
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.85, no.1-2, pp.33-47, 2010

A large earthquake, called the"Bunsei Kyoto earthquake,"occurred at about 3 : 00 P.M.-5 : 00 P.M. 2nd day of 7th month, Bunsei 13th (Gregorian calendar: 19 August, 1830) in Kyoto, Kinki district, Japan, causing enormous damage, especially in the central part of Kyoto city. Large structures of representative architecture in Kyoto city at the time such as the Nijo Castle, Imperial Palace, and major temples, as well as the walls (e.g., stone walls or tamped earthen walls) surrounding them were heavily damaged. Further, there were collapses of a number of Machiya, traditional Japanese residential architectural style incorporating workplaces of merchants and craftsmen, which caused many casualties. About 60% of the area of Kyoto city was occupied by such buildings housing merchants and craftsmen in those days. One major contributing factor of the collapses of Machiya is thought to be the rapid diffusion of pantile roofs in the 19th century.
著者
浜田 盛久
出版者
東京大学地震研究所
雑誌
東京大學地震研究所彙報 = Bulletin of the Earthquake Research Institute, University of Tokyo (ISSN:00408972)
巻号頁・発行日
vol.91, no.3, pp.41-54, 2016

Izu-Oshima is an active volcano located on the volcanic front of the Izu arc. It erupts island arc low-K tholeiite magma. During the past 150 years it has erupted repeatedly at intervals of 30-40 years. Thirty years have already passed since its last eruption (1986-1987) ; therefore, the next eruption is expected in the near future. The hypothesis that the next eruption of Izu-Oshima volcano is triggered by an aftereffect of the M9Tohoku-Oki earthquake, which took place on March 11th, 2011, is considered. In both the 9th century and the period between the 17th century and the 20th century, volcanism of Izu-Oshima volcano seems to have been activated in association with earthquakes occurring near the volcano. While some eruptions occurred after earthquakes, others occurred before earthquakes. It is possible that regional tectonic stress can trigger both major earthquakes and intense volcanic activity, although this hypothesis should be tested at Izu-Oshima volcano and/or elsewhere. Petrological studies of Izu-Oshima volcano are also reviewed to understand its magma plumbing system, providing useful information to prepare for its next eruption. It is proposed that polybaric crystallization differentiation of H2O-saturated magmas proceeds in both the magma chamber at 4 km depth (~3 wt.% H2O in melt) and the magma chamber at 9km depth (~5 wt.% H2O in melt). The H2O-rich nature of the basaltic magmas beneath the volcano suggests that a future eruption of Izu-Oshima volcano could be highly explosive if dissolved volatiles in melt are not sufficiently degassed from magma ascending through the conduit