- 著者
-
長谷川 健
柴田 翔平
小林 哲夫
望月 伸竜
中川 光弘
岸本 博志
- 出版者
- 特定非営利活動法人 日本火山学会
- 雑誌
- 火山 (ISSN:04534360)
- 巻号頁・発行日
- vol.66, no.3, pp.187-210, 2021-09-30 (Released:2021-10-29)
- 参考文献数
- 57
Based on detailed fieldwork, petrological and paleomagnetic investigations, we present a revised stratigraphy of deposits from the 7.6 ka eruption at Mashu volcano and the formation process of its summit caldera, eastern Hokkaido, Japan. As previously described, the eruption products consist of an initial phreatomagmatic unit (Ma-j) and the overlying three pumice-fall layers (Ma-i, -h, and -g), which are in turn overlain by pyroclastic-flow deposits (Ma-f). In the present study, we divide Ma-f into 4 subunits: Ma-f1/2, Ma-fAc, Ma-f3a and Ma-f3b in descending order. Ma-f3b is a valley-ponding, pumice-flow deposit with limited distribution. Ma-f3a comprises clast-supported facies (fines-depleted ignimbrite: FDI) and matrix-supported (normal ignimbrite) facies, the two changing across topography. The FDI is characterized by a gray, fines-depleted, lithic-breccia-rich layer with materials incorporated from the substrate. Impact sag structures from large (>50 cm) dacite ballistic blocks were recognized at the base of the Ma-f3a within 10 km from the source. Ma-fAc is a minor eruption unit consisting of accretionary lapilli. Ma-f1/2 is a most voluminous (8.8 km3), widely distributed and weakly stratified ignimbrite. Both Ma-f3a and Ma-f1/2 can be classified as “low aspect ratio ignimbrite (LARI)”. Dacite lithic fragments are ubiquitously observed throughout the sequence and are not considered to be juvenile; they have distinctly different chemical compositions from the pumice fragments in the early pumice-fall (Ma-g~Ma-i) and pyroclastic-flow (Ma-f3b) deposits, but those of pumice clasts in the late pyroclastic-flow units (Ma-f3a and Ma-f2) lie between the two on a FeO*/MgO vs. SiO2 diagram. The 7.6 ka caldera-forming eruption of the Mashu volcano was initiated by Plinian fall (Ma-j~-g), and then, a small-volume high aspect ratio ignimbrite (Ma-f3b) was deposited by a valley-confined pyroclastic flow that was generated by partial column collapse. After that, a violent pyroclastic flow was generated probably during a strong explosion of a dacite lava edifice on the summit of Mashu volcano. This flow emplaced Ma-f3a. The caldera collapse that followed the explosion generated a climactic pyroclastic flow that emplaced Ma-f1/2. Ma-f3a flow was extremely fast. Ma-f1/2 flow was related to sustained flow due to low settling velocity and high discharge volume. These are supported by field observations and numerical simulation that shows the ability of the flow to surmount high topographic obstacles and spread widely. The 7.6 ka caldera-forming process of Mashu volcano was driven not only by subsidence of roof block but also by violent explosions.