- 著者
-
平尾 努
鈴木 潤
磯崎 秀樹
- 雑誌
- 情報処理学会論文誌データベース(TOD) (ISSN:18827799)
- 巻号頁・発行日
- vol.2, no.1, pp.1-9, 2009-03-31
従来の文短縮手法の多くは,入力された文を構文木として表現し,その部分木を削除することで,短縮文を生成する.このようなアプローチは文法的な短縮文を生成するという観点からは理にかなっている.しかし,多くの場合,人間は構文木の刈り込みだけで短縮文を生成するわけではない.これは,構文情報に過度に依存することが,高品質な文短縮を行うための妨げとなることを示している.そこで,本稿では,構文情報を用いない文短縮手法を提案する.短縮文の言語としてのもっともらしさを構文情報を用いずに評価するため,原文と大規模コーパスから得た統計情報を組み合わせた新たな言語モデルを提案する.提案手法を文献 18) のテストセットを用いて評価したところ,自動評価指標においては,提案手法が従来法より優れていることを確認した.さらに,提案手法が日本語だけでなく英語でも有効であることも示す.